Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Org Chem ; 89(12): 9092-9097, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38841830

RESUMO

Shortwave infrared (SWIR, 1000-1700 nm) absorbing and emitting dyes are needed for infrared diodes and sensors used in a wide variety of industrial and medical applications. Herein, an electron-withdrawing phosphine oxide (P═O) substituted xanthene is coupled with strong indolizine donors to produce a SWIR absorbing (λabs = 1294 nm in DCM) and emitting (λemis = 1450 nm in DCM) dye called PRos1450. The unique properties of this dye are characterized via photophysical, electrochemical, and computational analyses.

2.
J Org Chem ; 89(5): 2825-2839, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334085

RESUMO

Fluorescence-based biological imaging in the shortwave infrared (SWIR, 1000-1700 nm) is an attractive replacement for modern in vivo imaging techniques currently employed in both medical and research settings. Xanthene-based fluorophores containing heterocycle donors have recently emerged as a way to access deep SWIR emitting fluorophores. A concern for xanthene-based SWIR fluorophores though is chemical stability toward ambient nucleophiles due to the high electrophilicity of the cationic fluorophore core. Herein, a series of SWIR emitting silicon-rosindolizine (SiRos) fluorophores with emission maxima >1300 nm (up to 1550 nm) are synthesized. The SiRos fluorophore photophysical properties and chemical stability toward nucleophiles are examined through systematic derivatization of the silicon-core alkyl groups, indolizine donor substitution, and the use of o-tolyl or o-xylyl groups appended to the fluorophore core. The dyes are studied via absorption spectroscopy, steady-state emission spectroscopy, solution-based cyclic voltammetry, time-dependent density functional theory (TD-DFT) computational analysis, X-ray diffraction crystallography, and relative chemical stability over time. Optimal chemical stability is observed via the incorporation of the 2-ethylhexyl silicon substituent and the o-xylyl group to protect the core of the fluorophore.

3.
J Am Chem Soc ; 145(2): 1367-1377, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36595559

RESUMO

Strong-field hexadentate ligands were synthesized and coordinated to cobalt metal centers to result in three new low-spin to low-spin Co(III/II) redox couples. The ligand backbone has been modified with dimethyl amine groups to result in redox potential tuning of the Co(III/II) redox couples from -200 to -430 mV versus Fc+/0. The redox couples surprisingly undergo a reversible molecular switch rearrangement from five-coordinate Co(II) to six-coordinate Co(III) despite the ligands being hexadentate. The complexes exhibit modestly faster electron self-exchange rate constants of 2.2-4.2 M-1 s-1 compared to the high-spin to low-spin redox couple [Co(bpy)3]3+/2+ at 0.27 M-1 s-1, which is attributed to the change in spin state being somewhat offset by this coordination switching behavior. The complexes were utilized as redox shuttles in dye-sensitized solar cells with the near-IR AP25 + D35 dye system and exhibited improved photocurrents over the [Co(bpy)3]3+/2+ redox shuttle (19.8 vs 18.0 mA/cm2). Future directions point toward pairing the low-spin to low-spin Co(II/III) tunable series to dyes with significantly more negative highest occupied molecular orbital potentials that absorb into the near-IR where outer sphere redox shuttles have failed to produce efficient dye regeneration.


Assuntos
Cobalto , Luz Solar , Ligantes , Oxirredução , Corantes
4.
Langmuir ; 39(31): 10806-10819, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37501336

RESUMO

Due to its abundance in blood, a great deal of research has been undertaken to develop efficient biosensors for serum albumin and provide insight into the interactions that take place between these biosensing molecules and the protein. Near-infrared (NIR, >700 nm) organic dyes have been shown to be effective biosensors of serum albumin, but their effectiveness is diminished in whole blood. Herein, it is shown that an NIR sulfonate indolizine-donor-based squaraine dye, SO3SQ, can be strengthened as a biosensor of albumin through the addition of biocompatible ionic liquids (ILs). Specifically, the IL choline glycolate (1:1), at a concentration of 160 mM, results in the enhanced fluorescence emission ("switch-on") of the dye in the presence of blood. The origin of the fluorescence enhancement was investigated via methods, including DLS, ITC, and molecular dynamics. Further, fluorescence measurements were conducted to see the impact the dye-IL system had on the fluorescence of the tryptophan residue of human serum albumin (HSA), as well as to determine its apparent association constants in relation to albumin. Circular dichroism (CD) spectroscopy was used to provide evidence that the dye-IL system does not alter the secondary structures of albumin or DNA. Our results suggest that the enhanced fluorescence of the dye in the presence of IL and blood is due to diversification of binding sites in albumin, controlled by the interaction of the IL-dye-albumin complex.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/química , Albumina Sérica/química , Albumina Sérica Humana/química , Sítios de Ligação , Triptofano/química , Espectrometria de Fluorescência/métodos , Dicroísmo Circular
5.
Molecules ; 28(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770954

RESUMO

Fluorescent organic dyes that absorb and emit in the near-infrared (NIR, 700-1000 nm) and shortwave infrared (SWIR, 1000-1700 nm) regions have the potential to produce noninvasive high-contrast biological images and videos. BODIPY dyes are well known for their high quantum yields in the visible energy region. To tune these chromophores to the NIR region, fused nitrogen-based heterocyclic indolizine donors were added to a BODIPY scaffold. The indolizine BODIPY dyes were synthesized via microwave-assisted Knoevenagel condensation with indolizine aldehydes. The non-protonated dyes showed NIR absorption and emission at longer wavelengths than an aniline benchmark. Protonation of the dyes produced a dramatic 0.35 eV bathochromic shift (230 nm shift from 797 nm to 1027 nm) to give a SWIR absorption and emission (λmaxemis = 1061 nm). Deprotonation demonstrates that material emission is reversibly switchable between the NIR and SWIR.

6.
J Org Chem ; 87(17): 11319-11328, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35984405

RESUMO

The design of shortwave infrared (SWIR) emissive small molecules with good stability in water remains an important challenge for fluorescence biological imaging applications. A series of four SWIR emissive rhodindolizine (RI) dyes were rationally designed and synthesized to probe the effects of nonconjugated substituents, conjugated donor groups, and nanoencapsulation in a water-soluble polymer on the stability and optical properties of the dyes. Steric protecting groups were added at the site of a significant LUMO presence to probe the effects on stability. Indolizine donor groups with added dimethylaniline groups were added to reduce the electrophilicity of the dyes toward nucleophiles such as water. All of the dyes were found to absorb (920-1096 nm peak values) and emit (1082-1256 nm peak values) within the SWIR region. Among xanthene-based emissive dyes, emission values >1200 nm are exceptional with 1256 nm peak emission being a longer emission than the recent record setting VIX-4 xanthene-based dye. Half-lives were improved from ∼5 to >24 h through the incorporation of either steric-based core protection groups or donors with increased donation strength. Importantly, the nanoencapsulation of the dyes in a water-soluble surfactant (Triton-X) allows for the use of these dyes in biological imaging applications.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Imagem Óptica/métodos , Polímeros , Água , Xantenos
7.
Inorg Chem ; 61(46): 18802-18809, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36350300

RESUMO

Molecular catalysts that are durable and highly selective in the photocatalytic CO2 reduction reaction (PCO2RR) are in high demand. Molecular gold complexes are underexplored in the CO2RR manifold despite heterogeneous gold-CO2 reduction catalyst counterparts being frequently studied. In this report, a series of N-heterocyclic carbene (NHC)-ligated Au complexes are evaluated in the PCO2RR with an added photosensitizer (tris(2-phenylpyridine)iridium, Ir(ppy)3). The complexes were each studied with and without an added activator used to open a coordination site on the Au complexes. Results show an example of an exceptionally durable PCO2RR catalyst lasting >100 h with high product selectivity for CO. Heterogeneity tests reveal no evidence of a nonhomogeneous active catalyst, and structure-activity relationships of the molecular complexes are discussed.

8.
Chem Soc Rev ; 50(22): 12450-12550, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34590638

RESUMO

Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.

9.
J Org Chem ; 86(21): 15376-15386, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34647452

RESUMO

Shortwave infrared (SWIR)-emitting small molecules are desirable for biological imaging applications. In this study, four novel pentamethine indolizine cyanine dyes were synthesized with N,N-dimethylaniline-based substituents on the indolizine periphery at varied substitution sites. The dyes are studied via computational chemistry and optical spectroscopy both in solution and when encapsulated. Dramatic spectral shifts in the absorption and emission spectrum wavelengths with added donor groups are observed. Significant absorption and emission with an emissive quantum yield as high as 3.6% in the SWIR region is possible through the addition of multiple donor groups per indolizine.


Assuntos
Indolizinas , Quinolinas , Corantes Fluorescentes , Raios Infravermelhos
10.
Nanotechnology ; 32(14): 145702, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33339004

RESUMO

Zn2SnO4 (ZTO) nanocrystals are extensively studied in various fields. However, size-dependent ZTO nanocrystals are still challenging to understand their structural, optical, photocatalytic, and optoelectronic properties. ZTO nanocrystals are synthesized by a facile hydrothermal reaction method. The structural properties of the synthesized ZTO nanocrystals are studied by x-ray diffraction and transmission electron microscope. The sizes of the ZTO nanocrystals are controlled by the pH values of the precursor and the molar ratios of the Zn:Sn in the starting materials. ZTO nanocrystals with the small size of 6 nm and large size of 270 nm are obtained by our method. The Eu3+ ions are doped into ZTO nanocrystals to probe size-dependent Eu doping sites, which shows significant potential applications in light emitting diode phosphors. Moreover, the photocatalytic activity of ZTO nanocrystals on rhodamine (RhB) decoloration are investigated, and the results show that 6 nm ZTO nanocrystals show better performance in the photocatalytic decoloration of RhB compared to 270 nm nanocrystals. Most importantly, we design and fabricate optoelectronic devices to detect IR light based on our nanocrystals and a self-prepared NIR cyanine dye. The device based on small sized ZTO nanocrystals exhibits better device performance under 808 nm IR light compared to that of the large sized ZTO nanocrystals. We believe this work represents ZTO size-dependent properties in term of structural, optical, photocatalytic, and optoelectronic properties as a multifunctional material.

11.
J Org Chem ; 85(6): 4089-4095, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32037825

RESUMO

Organic dyes that absorb and emit in the near-infrared (NIR) region are potentially noninvasive, high-resolution, and rapid biological imaging materials. Indolizine donor-based cyanine and squaraine dyes with water-solubilizing sulfonate groups were targeted in this study due to strong absorptions and emissions in the NIR region. As previously observed for nonwater-soluble derivatives, the indolizine group with water-solubilizing groups retains a substantial shift toward longer wavelengths for both absorption and emission with squaraines and cyanines relative to classically researched indoline donor analogues. Very high quantum yields (as much as 58%) have been observed with absorption and emission >700 nm in fetal bovine serum. Photostability studies, cell culture cytotoxicity, and cell uptake specificity profiles were all studied for these dyes, demonstrating exceptional biological imaging suitability.


Assuntos
Ciclobutanos , Indolizinas , Corantes Fluorescentes , Fenóis , Água
12.
Inorg Chem ; 59(16): 11266-11272, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32615039

RESUMO

The conversion of protons to H2 is a critical reaction for the design of renewable fuel generating systems. Robust, earth-abundant, metal-based catalysts that can rapidly facilitate this reduction reaction are highly desirable. Mn(bpy)(CO)3Br generates an active catalyst for the proton reduction reaction upon photolysis at a high, directly observed H2 production rate of 1 300 000 turnovers per hour, with a low driving force for this reaction. Through the use of FcMe10 as an electron source, a proton source (triflic acid, 4-cyanoanilinium, or tosylic acid), and MeCN/H2O as solvent, the thermal reaction at room temperature was found to proceed until complete consumption of the electron source. No apparent loss in catalytic activity was observed to the probed limit of 10 000 000 turnovers of H2. Interestingly, a catalytically competent complex (Mn(bpy)2Br2), which could be isolated and characterized, formed upon photolysis of Mn(bpy)(CO)3Br in the presence of acid.

13.
J Am Chem Soc ; 141(16): 6617-6622, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30925216

RESUMO

Photocatalytic conversion of CO2 to reduced carbon states using sunlight and an earth-abundant catalyst could provide a critically needed source of renewable energy. Very few earth-abundant catalysts have shown CO2 to CH4 reactivity, and significant opportunities exist to improve catalyst durability. Through the strategic design of a novel, redox-active bipyridyl- N-heterocyclic carbene macrocyclic ligand complexed with nickel, CO2 is converted into the energy-rich solar fuel, CH4, photocatalytically with a photosensitizer in the presence of water. Up to 19 000 turnovers of CH4 from CO2 are observed. An exceptional turnover number of 570 000 for CH4 production via a photodriven formal hydrogenation of CO to CH4 was also found. This unique reactivity from a tunable, highly durable macrocyclic framework was studied via a series of photocatalytic and electrocatalytic reactions varying the atmospheric composition, as well as by isotopic labeling experiments and quantum yield calculations to evaluate the effect of ligand structure on product generation.

14.
Chemistry ; 25(62): 14205-14213, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31418941

RESUMO

Tin oxide (SnO2 ) is the most attractive alternative to titanium oxide (TiO2 ) with the aim of identifying a more positive conduction band material for dye-sensitized solar cells (DSCs). This study puts forward a protocol based on grinding, sonication, and centrifuge to generate transparent SnO2 pastes to minimize light reflectance losses from the metal oxide. Under optimized conditions, a highly transparent film with substantially enhanced light penetration depth through active layer SnO2 is realized for efficient light harvesting from two different commercially available powders (18 and 35 nm nanoparticle sizes). A ruthenium sensitizer (B11) and two organic sensitizers (NL3 and MK2) are shown to achieve higher or comparable photocurrent densities with SnO2 relative to standard TiO2 -based DSCs. SnO2 -based DSCs show minimum recombination losses, comparable charge collection efficiencies, and minimal photovoltage losses relative to TiO2 DSCs. Thus, the option of a transparent metal oxide, which can facilitate high photocurrents (>16 mA cm-2 observed) and lower recombination rates than TiO2 is an attractive material for DSC applications.

15.
J Org Chem ; 84(2): 687-697, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30540461

RESUMO

Molecular engineering strategies designed to red-shift cyanine dye absorptions and emissions further into the near-infrared (NIR) spectral region are explored. Through the use of a novel donor group, indolizine, with varying cyanine bridge lengths, dye absorptions and emissions, were shifted deeper into the NIR region than common indoline-cyanines. Stokes shifts resulting from intramolecular steric interactions of up to ∼60 nm in many cases were observed and explained computationally. Molecular brightnesses of up to 5800 deep into the NIR region were observed. Structure-property relationships are explored for the six indolizine-cyanine dyes with varying cyanine bridge length and indolizine substituents showing broad absorption and emission tunability. The dyes are characterized by crystallography, and the photophysical properties are probed by varying solvent for absorption and emission studies. Computational data show involvement of the entire indolizine π-system during light absorption, which suggests these systems can be tunable even further into the NIR region through select derivatizations.

16.
J Org Chem ; 84(20): 13186-13193, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31479270

RESUMO

A NIR II emissive dye was synthesized by the C-H bond functionalization of 1-methyl-2-phenylindolizine with 3,6-dibromoxanthene. The rhodindolizine (RhIndz) spirolactone product was nonfluorescent; however, upon opening of the lactone ring by the formation of the ethyl ester derivative, the fluorophore absorbs at 920 nm and emits at 1092 nm, which are both in the NIR II region. In addition, 4-cyanophenyl- (CNRhIndz) and 4-methoxyphenyl-substituted rhodindolizine (MeORhIndz) could also be prepared by the C-H activation reaction.

17.
Inorg Chem ; 58(12): 8012-8020, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31185538

RESUMO

Five ruthenium catalysts described herein facilitate self-sensitized carbon dioxide reduction to form carbon monoxide with a ruthenium catalytic center. These catalysts include four new and one previously reported CNC pincer complexes featuring a pyridinol derived N-donor and N-heterocyclic carbene (NHC) C-donors derived from imidazole or benzimidazole. The complexes have been characterized fully by spectroscopic and analytic methods, including X-ray crystallography. Introduction of a 2,2'-bipyridine (bipy) coligand and phenyl groups on the NHC ligand was necessary for rapid catalysis. [(CNC)Ru(bipy)(CH3CN)](OTf)2 is among the most active and durable photocatalysts in the literature for CO2 reduction without an external photosensitizer. The role of the structure of this complex in catalysis is discussed, including the importance of the pincer's phenyl wingtips, the bipyridyl ligand, and a weakly coordinating monodentate ligand.

18.
Chemistry ; 24(22): 5939-5949, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29461663

RESUMO

A series of four ullazine-donor based donor-π bridge-acceptor (D-π-A) dyes have been synthesized and compared to a prior ullazine donor-acceptor (D-A) dye as well as a triphenylamine donor with an identical π-bridge and acceptor. The D-π-A ullazine series demonstrates an unusually uniform-in-intensity panchromatic UV/Vis absorption spectrum throughout the visible region. This is in part due to the introduction of strong high-energy bands through incorporation of the ullazine building block as shown by computational analysis. The dyes were characterized on TiO2 films and in DSC devices. Performances of 5.6 % power conversion efficiency were obtained with IPCE onsets reaching 800 nm.

19.
Phys Chem Chem Phys ; 20(4): 2438-2443, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29308797

RESUMO

Four organic sensitizers incorporating a cross-conjugated cyclopenta[2,1-b:3,4-b']dithiophene (CPDT) π-bridge have been synthesized. As a result of molecular engineering, broad high energy bands and red shifted absorption maxima and onset is observed relative to a benchmark analogue (C218) using a non-cross-conjugated CPDT π-bridge. The use of a cross-conjugated bridge allows a new strategy for tuning dye energetics and introduction of increased absorption uniformity by adding additional high-energy absorption bands. These dyes show solar-to-electric conversion up to 800 nm with one derivative exceeding the performance of C218 under identical conditions.

20.
Phys Chem Chem Phys ; 20(26): 17859-17870, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29923565

RESUMO

Iodine binding to thiophene rings in dyes for dye-sensitized solar cells (DSCs) has been hypothesized to be performance degrading in a number of literature cases. Binding of iodine to dyes near the semiconductor surface can promote undesirable electron transfers and lower the overall efficiency of devices. Six thiophene or furan containing dye analogs were synthesized to analyze iodine binding to the dyes via Raman spectroscopy, UV-Vis studies, device performance metrics and density functional theory (DFT) based computations. Evidence suggests I2 binds thiophene-based dyes stronger than furan-based dyes. This leads to higher DSC device currents and voltages from furan analogues, and longer electron lifetimes in DSC devices using furan based dyes. Raman spectrum of the TiO2 surface-bound dyes reveals additional and more instense peaks for thiophene dyes in the presence of I2 relative to no I2. Additionally, broader and shifted UV-Vis peaks are observed for thiophene dyes in the presence of I2 on TiO2 films suggesting significant interaction between the dye molecules and I2. These observations are also supported by DFT and TD-DFT calculations which indicate the absence of a key geometric energy minimum in the dye-I2 ground state for furan dyes which are readily observed for the thiophene based analogues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA