RESUMO
Human rhinovirus is the most frequently isolated virus during severe exacerbations of chronic respiratory diseases, like chronic obstructive pulmonary disease. In this disease, alveolar macrophages display significantly diminished phagocytic functions that could be associated with bacterial superinfections. However, how human rhinovirus affects the functions of macrophages is largely unknown. Macrophages treated with HRV16 demonstrate deficient bacteria-killing activity, impaired phagolysosome biogenesis, and altered intracellular compartments. Using RNA sequencing, we identify the small GTPase ARL5b to be upregulated by the virus in primary human macrophages. Importantly, depletion of ARL5b rescues bacterial clearance and localization of endosomal markers in macrophages upon HRV16 exposure. In permissive cells, depletion of ARL5b increases the secretion of HRV16 virions. Thus, we identify ARL5b as a novel regulator of intracellular trafficking dynamics and phagolysosomal biogenesis in macrophages and as a restriction factor of HRV16 in permissive cells.
Assuntos
Macrófagos , Rhinovirus , Humanos , Macrófagos/microbiologia , Macrófagos Alveolares , Fagocitose , BactériasRESUMO
Pigment organelles of vertebrates belong to the lysosome-related organelle (LRO) family, of which melanin-producing melanosomes are the prototypes. While their anabolism has been extensively unraveled through the study of melanosomes in skin melanocytes, their catabolism remains poorly known. Here, we tap into the unique ability of crab spiders to reversibly change body coloration to examine the catabolism of their pigment organelles. By combining ultrastructural and metal analyses on high-pressure frozen integuments, we first assess whether pigment organelles of crab spiders belong to the LRO family and second, how their catabolism is intracellularly processed. Using scanning transmission electron microscopy, electron tomography, and nanoscale Synchrotron-based scanning X-ray fluorescence, we show that pigment organelles possess ultrastructural and chemical hallmarks of LROs, including intraluminal vesicles and metal deposits, similar to melanosomes. Monitoring ultrastructural changes during bleaching suggests that the catabolism of pigment organelles involves the degradation and removal of their intraluminal content, possibly through lysosomal mechanisms. In contrast to skin melanosomes, anabolism and catabolism of pigments proceed within the same cell without requiring either cell death or secretion/phagocytosis. Our work hence provides support for the hypothesis that the endolysosomal system is fully functionalized for within-cell turnover of pigments, leading to functional maintenance under adverse conditions and phenotypic plasticity. First formulated for eye melanosomes in the context of human vision, the hypothesis of intracellular turnover of pigments gets unprecedented strong support from pigment organelles of spiders.
Assuntos
Cor , Lisossomos/metabolismo , Melanossomas/fisiologia , Organelas/fisiologia , Pigmentos Biológicos/fisiologia , Pele/metabolismo , Aranhas/fisiologia , Animais , Endossomos/metabolismoRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1009340.].
RESUMO
Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection.
Assuntos
Antivirais/administração & dosagem , Retículo Endoplasmático/patologia , Interações Hospedeiro-Patógeno , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Retículo Endoplasmático/virologia , Humanos , Imunidade Inata , Influenza Humana/patologia , Influenza Humana/virologia , Mitocôndrias/patologia , Mitocôndrias/virologia , Replicação ViralRESUMO
Mahogunin Ring Finger 1 (MGRN1) is an E3-ubiquitin ligase absent in dark-furred mahoganoid mice. We investigated the mechanisms of hyperpigmentation in Mgrn1-null melan-md1 melanocytes, Mgrn1-KO cells obtained by CRISPR-Cas9-mediated knockdown of Mgrn1 in melan-a6 melanocytes, and melan-a6 cells depleted of MGRN1 by siRNA treatment. Mgrn1-deficient melanocytes showed higher melanin content associated with increased melanosome abundance and higher fraction of melanosomes in highly melanized maturation stages III-IV. Expression, post-translational processing and enzymatic activity of the rate-limiting melanogenic enzyme tyrosinase measured in cell-free extracts were comparable in control and MGRN1-depleted cells. However, tyrosinase activity measured in situ in live cells and expression of genes associated with regulation of pH increased upon MGRN1 repression. Using pH-sensitive fluorescent probes, we found that downregulation of MGRN1 expression in melanocytes and melanoma cells increased the pH of acidic organelles, including melanosomes, strongly suggesting a previously unknown role of MGRN1 in the regulation of melanosomal pH. Among the pH regulatory genes upregulated by Mgrn1 knockdown, we identified those encoding several subunits of the vacuolar adenosine triphosphatase V-ATPase (mostly Atp6v0d2) and a calcium channel of the transient receptor potential channel family, Mucolipin 3 (Mcoln3). Manipulation of expression of the Mcoln3 gene showed that overexpression of Mcoln3 played a significant role in neutralization of the pH of acidic organelles and activation of tyrosinase in MGRN1-depleted cells. Therefore, lack of MGRN1 led to cell-autonomous stimulation of pigment production in melanocytes mostly by increasing tyrosinase specific activity through neutralization of the melanosomal pH in a MCOLN3-dependent manner.
Assuntos
Pigmentação , Pele/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Animais , Humanos , Concentração de Íons de Hidrogênio , Melanócitos , Melanoma Experimental , Melanossomas , Camundongos , Pele/citologia , Pele/patologiaRESUMO
Large GTPases of the Dynamin Related Proteins (DRP) family shape lipid bilayers through membrane fission or fusion processes. Despite the highly organized photosynthetic membranes of thylakoids, a single DRP is known to be targeted inside the chloroplast. Fzl from the land plant Arabidopsis thaliana is inserted in the inner envelope and thylakoid membranes to regulate their morphology. Fzl may promote the fusion of thylakoids but this remains to be proven. Moreover, the physiological requirement for fusing thylakoids is currently unknown. Here, we find that the unicellular microalga Chlamydomonas reinhardtii encodes an Fzl ortholog (CrFzl) that is localized in the chloroplast where it is soluble. To explore its function, the CRISPR/Cas9 technology was employed to generate multiple CrFzl knock out strains. Phenotypic analyzes revealed a specific requirement of CrFzl for survival upon light stress. Consistent with this, strong irradiance lead to increased photoinhibition of photosynthesis in mutant cells. Fluorescence and electron microscopy analysis demonstrated that upon exposure to high light, CrFzl mutants show defects in chloroplast morphology but also large cytosolic vacuoles in close contact with the plastid. We further observe that strong irradiance induces an increased recruitment of the DRP to thylakoid membranes. Most importantly, we show that CrFzl is required for the fusion of thylakoids during mating. Together, our results suggest that thylakoids fusion may be necessary for resistance to light stress.
Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Tilacoides/metabolismo , Proteínas de Algas/genética , Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Cloroplastos/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , Técnicas de Inativação de Genes , Luz , Fusão de Membrana , Microscopia Eletrônica de Transmissão , Mutação , Processos Fototróficos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Tilacoides/efeitos da radiação , Tilacoides/ultraestruturaRESUMO
PURPOSE: Albinism is a clinically and genetically heterogeneous condition. Despite analysis of the 20 known genes, ~30% patients remain unsolved. We aimed to identify new genes involved in albinism. METHODS: We sequenced a panel of genes with known or predicted involvement in melanogenesis in 230 unsolved albinism patients. RESULTS: We identified variants in the Dopachrome tautomerase (DCT) gene in two patients. One was compound heterozygous for a 14-bp deletion in exon 9 and c.118T>A p.(Cys40Ser). The second was homozygous for c.183C>G p.(Cys61Trp). Both patients had mild hair and skin hypopigmentation, and classical ocular features. CRISPR-Cas9 was used in C57BL/6J mice to create mutations identical to the missense variants carried by the patients, along with one loss-of-function indel. When bred to homozygosity the three mutations revealed hypopigmentation of the coat, milder for Cys40Ser compared with Cys61Trp or the frameshift mutation. Histological analysis identified significant hypopigmentation of the retinal pigmented epithelium (RPE) indicating that defective RPE melanogenesis could be associated with eye and vision defects. DCT loss of function in zebrafish embryos elicited hypopigmentation both in melanophores and RPE cells. CONCLUSION: DCT is the gene for a new type of oculocutaneous albinism that we propose to name OCA8.
Assuntos
Albinismo Oculocutâneo , Peixe-Zebra , Albinismo Oculocutâneo/genética , Animais , Humanos , Oxirredutases Intramoleculares , Camundongos , Camundongos Endogâmicos C57BL , MutaçãoRESUMO
Sorting endosomes (SEs) are the regulatory hubs for sorting cargo to multiple organelles, including lysosome-related organelles, such as melanosomes in melanocytes. In parallel, melanosome biogenesis is initiated from SEs with the processing and sequential transport of melanocyte-specific proteins toward maturing melanosomes. However, the mechanism of cargo segregation on SEs is largely unknown. Here, RNAi screening in melanocytes revealed that knockdown of Rab4A results in defective melanosome maturation. Rab4A-depletion increases the number of vacuolar endosomes and disturbs the cargo sorting, which in turn lead to the mislocalization of melanosomal proteins to lysosomes, cell surface and exosomes. Rab4A localizes to the SEs and forms an endosomal complex with the adaptor AP-3, the effector rabenosyn-5 and the motor KIF3, which possibly coordinates cargo segregation on SEs. Consistent with this, inactivation of rabenosyn-5, KIF3A or KIF3B phenocopied the defects observed in Rab4A-knockdown melanocytes. Further, rabenosyn-5 was found to associate with rabaptin-5 or Rabip4/4' (isoforms encoded by Rufy1) and differentially regulate cargo sorting from SEs. Thus, Rab4A acts a key regulator of cargo segregation on SEs.This article has an associated First Person interview with the first author of the paper.
Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas rab4 de Ligação ao GTP/metabolismo , HumanosRESUMO
PURPOSE: Hermansky-Pudlak syndrome (HPS) is characterized by oculocutaneous albinism, excessive bleeding, and often additional symptoms. Variants in ten different genes have been involved in HPS. However, some patients lack variants in these genes. We aimed to identify new genes involved in nonsyndromic or syndromic forms of albinism. METHODS: Two hundred thirty albinism patients lacking a molecular diagnosis of albinism were screened for pathogenic variants in candidate genes with known links to pigmentation or HPS pathophysiology. RESULTS: We identified two unrelated patients with distinct homozygous variants of the BLOC1S5 gene. Patients had mild oculocutaneous albinism, moderate bleeding diathesis, platelet aggregation deficit, and a dramatically decreased number of platelet dense granules, all signs compatible with HPS. Functional tests performed on platelets of one patient displayed an absence of the obligate multisubunit complex BLOC-1, showing that the variant disrupts BLOC1S5 function and impairs BLOC-1 assembly. Expression of the patient-derived BLOC1S5 deletion in nonpigmented murine Bloc1s5-/- melan-mu melanocytes failed to rescue pigmentation, the assembly of a functional BLOC-1 complex, and melanosome cargo trafficking, unlike the wild-type allele. CONCLUSION: Mutation of BLOC1S5 is disease-causing, and we propose that BLOC1S5 is the gene for a new form of Hermansky-Pudlak syndrome, HPS-11.
Assuntos
Síndrome de Hermanski-Pudlak , Alelos , Animais , Plaquetas , Síndrome de Hermanski-Pudlak/genética , Humanos , Camundongos , MutaçãoRESUMO
Recycling endosomes (REs) are transient endosomal tubular intermediates of early/sorting endosomes (E/SEs) that function in cargo recycling to the cell surface and deliver the cell type-specific cargo to lysosome-related organelles such as melanosomes in melanocytes. However, the mechanism of RE biogenesis is largely unknown. In this study, by using an endosomal Rab-specific RNAi screen, we identified Rab22A as a critical player during RE biogenesis. Rab22A-knockdown results in reduced RE dynamics and concurrent cargo accumulation in the E/SEs or lysosomes. Rab22A forms a complex with BLOC-1, BLOC-2 and the kinesin-3 family motor KIF13A on endosomes. Consistently, the RE-dependent transport defects observed in Rab22A-depleted cells phenocopy those in BLOC-1-/BLOC-2-deficient cells. Further, Rab22A depletion reduced the membrane association of BLOC-1/BLOC-2. Taken together, these findings suggest that Rab22A promotes the assembly of a BLOC-1-BLOC-2-KIF13A complex on E/SEs to generate REs that maintain cellular and organelle homeostasis.
Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Membrana Celular/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Células HeLa , Humanos , Cinesinas/metabolismo , Melanócitos/metabolismo , Melanossomas/metabolismo , Camundongos , Pigmentação , Pigmentos Biológicos/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA , Transdução de SinaisRESUMO
Influenza A is a rapidly evolving virus that is successful in provoking periodic epidemics and occasional pandemics in humans. Viral assembly is complex as the virus incorporates an eight-partite genome of RNA (in the form of viral ribonucleoproteins, vRNPs), and viral genome assembly - with its implications to public health - is not completely understood. It has previously been reported that vRNPs are transported to the cell surface on Rab11-containing vesicles by using microtubules but, so far, no molecular motor has been assigned to the process. Here, we have identified KIF13A, a member of the kinesin-3 family, as the first molecular motor to efficiently transport vRNP-Rab11 vesicles during infection with influenza A. Depletion of KIF13A resulted in reduced viral titers and less accumulation of vRNPs at the cell surface, without interfering with the levels of other viral proteins at sites of viral assembly. In addition, when overexpressed and following two separate approaches to displace vRNP-Rab11 vesicles, KIF13A increased levels of vRNP at the plasma membrane. Together, our results show that KIF13A plays an important role in the transport of influenza A vRNPs, a crucial step for viral assembly.This article has an associated First Person interview with the first author of the paper.
Assuntos
Vírus da Influenza A/patogenicidade , Cinesinas/metabolismo , Transporte Proteico/fisiologia , Ribonucleoproteínas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Genoma Viral/genética , Humanos , Microtúbulos/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologiaRESUMO
"Café-au-lait" macules (CALMs) and overall skin hyperpigmentation are early hallmarks of neurofibromatosis type 1 (NF1). One of the most frequent monogenic diseases, NF1 has subsequently been characterized with numerous benign Schwann cell-derived tumors. It is well established that neurofibromin, the NF1 gene product, is an antioncogene that down-regulates the RAS oncogene. In contrast, the molecular mechanisms associated with alteration of skin pigmentation have remained elusive. We have reassessed this issue by differentiating human embryonic stem cells into melanocytes. In the present study, we demonstrate that NF1 melanocytes reproduce the hyperpigmentation phenotype in vitro, and further characterize the link between loss of heterozygosity and the typical CALMs that appear over the general hyperpigmentation. Molecular mechanisms associated with these pathological phenotypes correlate with an increased activity of cAMP-mediated PKA and ERK1/2 signaling pathways, leading to overexpression of the transcription factor MITF and of the melanogenic enzymes tyrosinase and dopachrome tautomerase, all major players in melanogenesis. Finally, the hyperpigmentation phenotype can be rescued using specific inhibitors of these signaling pathways. These results open avenues for deciphering the pathological mechanisms involved in pigmentation diseases, and provide a robust assay for the development of new strategies for treating these diseases.
Assuntos
Células-Tronco Embrionárias/citologia , Hiperpigmentação/patologia , Melanócitos/patologia , Modelos Biológicos , Neurofibromatose 1/patologia , Proliferação de Células , AMP Cíclico/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Melaninas/metabolismo , Melanócitos/enzimologia , Melanócitos/metabolismo , Melanócitos/ultraestrutura , Mutação/genética , Neurofibromina 1/genética , Fenótipo , RNA Interferente Pequeno/metabolismo , Transdução de SinaisRESUMO
Melanocytes are specialized cells that generate unique organelles called melanosomes in which melanin is synthesized and stored. Melanosome biogenesis and melanocyte pigmentation require the transport and delivery of melanin synthesizing enzymes, such as tyrosinase and related proteins (e.g., TYRP1), from endosomes to maturing melanosomes. Among the proteins controlling endosome-melanosome transport, AP-1 together with KIF13A coordinates the endosomal sorting and trafficking of TYRP1 to melanosomes. We identify here ß1-adaptin AP-1 subunit-derived peptides of 5 amino acids that block the interaction of KIF13A with AP-1 in cells. Incubating these peptides with human MNT-1 cells or 3D-reconstructed pigmented epidermis decreases pigmentation by impacting the maturation of melanosomes in fully pigmented organelles. This study highlights that peptides targeting the intracellular trafficking of melanocytes are candidate molecules to tune pigmentation in health and disease.
Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Cinesinas/metabolismo , Melaninas/biossíntese , Melanossomas/efeitos dos fármacos , Peptídeos/farmacologia , Subunidades beta do Complexo de Proteínas Adaptadoras/química , Endossomos/metabolismo , Células HeLa , Humanos , Melanossomas/metabolismo , Transporte ProteicoRESUMO
Correlating complementary multiple scale images of the same object is a straightforward means to decipher biological processes. Light microscopy and electron microscopy are the most commonly used imaging techniques, yet despite their complementarity, the experimental procedures available to correlate them are technically complex. We designed and manufactured a new device adapted to many biological specimens, the CryoCapsule, that simplifies the multiple sample preparation steps, which at present separate live cell fluorescence imaging from contextual high-resolution electron microscopy, thus opening new strategies for full correlative light to electron microscopy. We tested the biological application of this highly optimized tool on three different specimens: the in vitro Xenopus laevis mitotic spindle, melanoma cells over-expressing YFP-langerin sequestered in organized membranous subcellular organelles and a pigmented melanocytic cell in which the endosomal system was labeled with internalized fluorescent transferrin.
Assuntos
Microscopia Crioeletrônica/métodos , Crioultramicrotomia/instrumentação , Animais , Linhagem Celular , Microscopia Crioeletrônica/instrumentação , Crioultramicrotomia/métodos , Cães , Endossomos/metabolismo , Endossomos/ultraestrutura , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , XenopusRESUMO
During the past years, exogenous DNA molecules have been used in gene and molecular therapy. At present, it is not known how these DNA molecules reach the cell nucleus. We used an in cell single-molecule approach to observe the motion of exogenous short DNA molecules in the cytoplasm of eukaryotic cells. Our observations suggest an active transport of the DNA along the cytoskeleton filaments. We used an in vitro motility assay, in which the motion of single-DNA molecules along cytoskeleton filaments in cell extracts is monitored; we demonstrate that microtubule-associated motors are involved in this transport. Precipitation of DNA-bound proteins and mass spectrometry analyses reveal the preferential binding of the kinesin KIFC1 on DNA. Cell extract depletion of kinesin KIFC1 significantly decreases DNA motion, confirming the active implication of this molecular motor in the intracellular DNA transport.
Assuntos
DNA/metabolismo , Cinesinas/metabolismo , Transporte Biológico Ativo , Citoesqueleto/metabolismo , DNA/análise , Dineínas/metabolismo , Células HeLa , Humanos , Cinesinas/análise , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Microtúbulos/metabolismoRESUMO
Myosin VI has been implicated in various steps of organelle dynamics. However, the molecular mechanism by which this myosin contributes to membrane traffic is poorly understood. Here, we report that myosin VI is associated with a lysosome-related organelle, the melanosome. Using an actin-based motility assay and video microscopy, we observed that myosin VI does not contribute to melanosome movements. Myosin VI expression regulates instead the organization of actin networks in the cytoplasm. Using a cell-free assay, we showed that myosin VI recruited actin at the surface of isolated melanosomes. Myosin VI is involved in the endocytic-recycling pathway, and this pathway contributes to the transport of a melanogenic enzyme to maturing melanosomes. We showed that depletion of myosin VI accumulated a melanogenic enzyme in enlarged melanosomes and increased their melanin content. We confirmed the requirement of myosin VI to regulate melanosome biogenesis by analysing the morphology of melanosomes in choroid cells from of the Snell's waltzer mice that do not express myosin VI. Together, our results provide new evidence that myosin VI regulates the organization of actin dynamics at the surface of a specialized organelle and unravel a novel function of this myosin in regulating the biogenesis of this organelle.
Assuntos
Actinas/metabolismo , Melanossomas/metabolismo , Cadeias Pesadas de Miosina/fisiologia , Actinas/química , Animais , Membrana Celular/metabolismo , Corioide/citologia , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica/métodos , Microscopia de Vídeo/métodos , Microtúbulos/metabolismo , Modelos Biológicos , Cadeias Pesadas de Miosina/química , Miosinas/metabolismo , PigmentaçãoRESUMO
Melanocytes are essential for skin homeostasis and protection, and their defects in humans lead to a wide array of diseases that are potentially extremely severe. To date, the analysis of molecular mechanisms and the function of human melanocytes have been limited because of the difficulties in accessing large numbers of cells with the specific phenotypes. This issue can now be addressed via a differentiation protocol that allows melanocytes to be obtained from pluripotent stem cell lines, either induced or of embryonic origin, based on the use of moderate concentrations of a single cytokine, bone morphogenic protein 4. Human melanocytes derived from pluripotent stem cells exhibit all the characteristic features of their adult counterparts. This includes the enzymatic machinery required for the production and functional delivery of melanin to keratinocytes. Melanocytes also integrate appropriately into organotypic epidermis reconstructed in vitro. The availability of human cells committed to the melanocytic lineage in vitro will enable the investigation of those mechanisms that guide the developmental processes and will facilitate analysis of the molecular mechanisms responsible for genetic diseases. Access to an unlimited resource may also prove a vital tool for the treatment of hypopigmentation disorders when donors with matching haplotypes become available in clinically relevant banks of pluripotent stem cell lines.
Assuntos
Células-Tronco Adultas/citologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Epidérmicas , Melanócitos/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Adultas/metabolismo , Linhagem Celular , Epiderme/metabolismo , Humanos , Hipopigmentação/metabolismo , Hipopigmentação/terapia , Melanócitos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transplante de Células-TroncoRESUMO
In eukaryotes, the spatiotemporal control of endolysosomal organelles is central to the maintenance of homeostasis. By providing an interface between the cytoplasm and external environment, the endolysosomal system is placed at the forefront of the response to a wide range of stresses faced by cells. Endosomes are equipped with a dedicated set of membrane-associated proteins that ensure endosomal functions as well as crosstalk with the secretory or the autophagy pathways. Morphodynamical processes operate through local spatialization of subdomains, enabling specific remodeling and membrane contact capabilities. Consequently, the plasticity of endolysosomal organelles can be considered a robust and flexible tool exploited by cells to cope with homeostatic deviations. In this review, we provide insights into how the cellular responses to various stresses (osmotic, UV, nutrient deprivation, or pathogen infections) rely on the adaptation of the endolysosomal system morphodynamics.
RESUMO
Myosin VI (Myo6) is the only minus-end directed nanomotor on actin, allowing it to uniquely contribute to numerous cellular functions. As for other nanomotors, the proper functioning of Myo6 relies on precise spatiotemporal control of motor activity via a poorly defined off-state and interactions with partners. Our structural, functional, and cellular studies reveal key features of myosin regulation and indicate that not all partners can activate Myo6. TOM1 and Dab2 cannot bind the off-state, while GIPC1 binds Myo6, releases its auto-inhibition and triggers proximal dimerization. Myo6 partners thus differentially recruit Myo6. We solved a crystal structure of the proximal dimerization domain, and show that its disruption compromises endocytosis in HeLa cells, emphasizing the importance of Myo6 dimerization. Finally, we show that the L926Q deafness mutation disrupts Myo6 auto-inhibition and indirectly impairs proximal dimerization. Our study thus demonstrates the importance of partners in the control of Myo6 auto-inhibition, localization, and activation.
Assuntos
Actinas , Cadeias Pesadas de Miosina , Humanos , Células HeLa , Dimerização , Actinas/metabolismo , Cadeias Pesadas de Miosina/metabolismoRESUMO
Melanosomes are pigment cell-specific lysosome-related organelles in which melanin pigments are synthesized and stored. Melanosome maturation requires delivery of melanogenic cargoes via tubular transport carriers that emanate from early endosomes and that require BLOC-1 for their formation. Here we show that phosphatidylinositol-4-phosphate (PtdIns4P) and the type II PtdIns-4-kinases (PI4KIIα and PI4KIIß) support BLOC-1-dependent tubule formation to regulate melanosome biogenesis. Depletion of either PI4KIIα or PI4KIIß with shRNAs in melanocytes reduced melanin content and misrouted BLOC-1-dependent cargoes to late endosomes/lysosomes. Genetic epistasis, cell fractionation, and quantitative live-cell imaging analyses show that PI4KIIα and PI4KIIß function sequentially and non-redundantly downstream of BLOC-1 during tubule elongation toward melanosomes by generating local pools of PtdIns4P. The data show that both type II PtdIns-4-kinases are necessary for efficient BLOC-1-dependent tubule elongation and subsequent melanosome contact and content delivery during melanosome biogenesis. The independent functions of PtdIns-4-kinases in tubule extension are downstream of likely redundant functions in BLOC-1-dependent tubule initiation.