Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771144

RESUMO

The structural composition of the cell wall of grape skins is related to the cell wall integrity and subsequent extraction of the different compounds that are contained inside vacuoles and also the cell wall breakdown products. Different reports have established that methyl jasmonate (MeJ) produces changes in the composition of the grape skin cell wall. The use of elicitors to promote the production of secondary metabolites in grapes has been studied in several reports; however, its study linked to nanotechnology is less developed. These facts led us to study the effect of methyl jasmonate (MeJ) and nanoparticles doped with MeJ (nano-MeJ) on the cell walls of Monastrell grapes during three seasons. Both treatments tended to increase cell wall material (CWM) and caused changes in different components of the skin cell walls. In 2019 and 2021, proteins were enlarged in both MeJ and nano-MeJ-treated grapes. A general decrease in total phenolic compounds was detected with both treatments, in addition to an increment in uronic acids when the grapes were well ripened. MeJ and nano-MeJ produced a diminution in the amount of cellulose in contrast to an increase in hemicellulose. It should be noted that the effects with nano-MeJ treatment occurred at a dose 10 times lower than with MeJ treatment.


Assuntos
Vitis , Vinho , Vitis/química , Vinho/análise , Acetatos/química , Parede Celular/química , Frutas/química
2.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566227

RESUMO

The application of methyl jasmonate (MeJ) as an elicitor to enhance secondary metabolites in grapes and wines has been studied, but there is little information about its use in conjunction with nanotechnology and no information about its effects on wine volatile compounds. This led us to study the impact of nanoparticles doped with MeJ (Nano-MeJ, 1mM MeJ) on the volatile composition of Monastrell wines over three seasons, compared with the application of MeJ in a conventional way (10 mM MeJ). The results showed how both treatments enhanced fruity esters in wines regardless of the vintage year, although the increase was more evident when grapes were less ripe. These treatments also achieved these results in 2019 in the cases of 1-propanol, ß-phenyl-ethanol, and methionol, in 2020 in the cases of hexanol and methionol, and in 2021, but only in the case of hexanol. On the other hand, MeJ treatment also increased the terpene fraction, whereas Nano-MeJ, at the applied concentration, did not increase it in any of the seasons. In summary, although not all families of volatile compounds were increased by Nano-MeJ, the Nano-MeJ treatment generally increased the volatile composition to an extent similar to that obtained with MeJ used in a conventional way, but at a 10 times lower dose. Therefore, the use of nanotechnology could be a good option for improving the quality of wines from an aromatic point of view, while reducing the necessary dosage of agrochemicals, in line with more sustainable agricultural practices.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Acetatos , Ciclopentanos , Frutas/química , Hexanóis/metabolismo , Odorantes/análise , Oxilipinas/metabolismo , Vitis/química , Compostos Orgânicos Voláteis/análise , Vinho/análise
3.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432174

RESUMO

Due to the fast, emerging development of antibiotic-resistant bacteria, the need for novel, efficient routes to battle these pathogens is crucial; in this scenario, metal-organic frameworks (MOFs) are promising materials for combating them effectively. Herein, a novel Cu-MOF-namely 1-that displays the formula [Cu3L2(DMF)2]n (DMF = N,N-dimethylformamide) is described, synthesized by the combination of copper(II) and 3,4-dihydroxybenzoic acid (H3L)-both having well-known antibacterial properties. The resulting three-dimensional structure motivated us to study the antibacterial activity, adsorptive capacity and processability of the MOF in the form of pellets and membranes as a proof-of-concept to evaluate its future application in devices.


Assuntos
Antibacterianos , Cobre , Cobre/química , Ligantes , Adsorção , Antibacterianos/farmacologia
4.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535576

RESUMO

In bone tissue engineering, the design of 3D systems capable of recreating composition, architecture and micromechanical environment of the native extracellular matrix (ECM) is still a challenge. While perfusion bioreactors have been proposed as potential tool to apply biomechanical stimuli, its use has been limited to a low number of biomaterials. In this work, we propose the culture of human mesenchymal stem cells (hMSC) in biomimetic mineralized recombinant collagen scaffolds with a perfusion bioreactor to simultaneously provide biochemical and biophysical cues guiding stem cell fate. The scaffolds were fabricated by mineralization of recombinant collagen in the presence of magnesium (RCP.MgAp). The organic matrix was homogeneously mineralized with apatite nanocrystals, similar in composition to those found in bone. X-Ray microtomography images revealed isotropic porous structure with optimum porosity for cell ingrowth. In fact, an optimal cell repopulation through the entire scaffolds was obtained after 1 day of dynamic seeding in the bioreactor. Remarkably, RCP.MgAp scaffolds exhibited higher cell viability and a clear trend of up-regulation of osteogenic genes than control (non-mineralized) scaffolds. Results demonstrate the potential of the combination of biomimetic mineralization of recombinant collagen in presence of magnesium and dynamic culture of hMSC as a promising strategy to closely mimic bone ECM.


Assuntos
Biomimética , Reatores Biológicos , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Apatitas/química , Materiais Biocompatíveis/química , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem da Célula , Colágeno/química , Meios de Cultura , Matriz Extracelular/metabolismo , Humanos , Magnésio/química , Nanopartículas/química , Osteogênese , Perfusão , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Engenharia Tecidual/métodos , Alicerces Teciduais , Microtomografia por Raio-X
5.
J Struct Biol ; 196(2): 138-146, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27374321

RESUMO

Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration.


Assuntos
Regeneração Óssea , Calcificação Fisiológica , Engenharia Tecidual/métodos , Animais , Apatitas , Biomimética/métodos , Linhagem Celular , Colágeno Tipo I/metabolismo , Magnésio , Camundongos , Minerais , Engenharia de Proteínas
6.
Langmuir ; 31(5): 1766-75, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25602940

RESUMO

Multifunctional biomimetic nanoparticles (NPs) are acquiring increasing interest as carriers in medicine and basic research since they can efficiently combine labels for subsequent tracking, moieties for specific cell targeting, and bioactive molecules, e.g., drugs. In particular, because of their easy synthesis, low cost, good biocompatibility, high resorbability, easy surface functionalization, and pH-dependent solubility, nanocrystalline apatites are promising candidates as nanocarriers. This work describes the synthesis and characterization of bioinspired apatite nanoparticles to be used as fluorescent nanocarriers targeted against the Met/hepatocyte growth factor receptor, which is considered a tumor associated cell surface marker of many cancers. To this aim the nanoparticles have been labeled with Fluorescein-5-isothiocyanate (FITC) by simple isothermal adsorption, in the absence of organic, possibly toxic, molecules, and then functionalized with a monoclonal antibody (mAb) directed against such a receptor. Direct labeling of the nanoparticles allowed tracking the moieties with spatiotemporal resolution and thus following their interaction with cells, expressing or not the targeted receptor, as well as their fate in vitro. Cytofluorometry and confocal microscopy experiments showed that the functionalized nanocarriers, which emitted a strong fluorescent signal, were rapidly and specifically internalized in cells expressing the receptor. Indeed, we found that, once inside the cells expressing the receptor, mAb-functionalized FITC nanoparticles partially dissociated in their two components, with some mAbs being recycled to the cell surface and the FITC-labeled nanoparticles remaining in the cytosol. This work thus shows that FITC-labeled nanoapatites are very promising probes for targeted cell imaging applications.


Assuntos
Anticorpos Monoclonais/química , Apatitas/química , Materiais Biomiméticos/química , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Imagem Molecular/métodos , Nanopartículas/química , Anticorpos Monoclonais/imunologia , Transporte Biológico , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/metabolismo , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Espaço Intracelular/metabolismo , Teste de Materiais , Proteínas Proto-Oncogênicas c-met/imunologia
7.
J Mater Sci Mater Med ; 25(10): 2305-12, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24652593

RESUMO

A novel methodology for the assembly of collagen fibrils in microliter drops is proposed. It consists in the gradual increase of pH by means of vapour diffusion coming from the decomposition of NH4HCO3 solutions. The pH increase rate as well as the final steady pH of solutions containing collagen can be adjusted by varying the concentration of NH4HCO3. Both parameters are of predominant importance in collagen fibrillogenesis. The effect of these parameters on the kinetic of the fibrillogenesis process and on the fibrils morphology was studied. We found that both the kinetic and the morphology are mainly driven by electrostatic interactions. A gradual increase of pH slows down the formation of collagen fibres and favours the lateral interaction between fibrils producing broader fibres. On the other hand, a rapid increase of pH reduces the lateral electrostatic interactions favouring the formation of thinner fibres. The formation of the D-band periodicity is also a pH-dependent process that occurs after fibrillogenesis when the most stable state of fibres formation has been reached.


Assuntos
Colágeno Tipo I/metabolismo , Colágenos Fibrilares , Multimerização Proteica , Bicarbonatos/química , Colágeno Tipo I/química , Difusão , Colágenos Fibrilares/química , Colágenos Fibrilares/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Nanofibras/química , Soluções , Volatilização
8.
Small ; 9(22): 3834-44, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-23606568

RESUMO

Nanosized drug carriers functionalized with moieties specifically targeting tumor cells are promising tools in cancer therapy, due to their ability to circulate in the bloodstream for longer periods and their selectivity for tumor cells, enabling the sparing of healthy tissues. Because of its biocompatibility, high bioresorbability, and responsiveness to pH changes, synthetic biomimetic nanocrystalline apatites are used as nanocarriers to produce multifunctional nanoparticles, by coupling them with the chemotherapeutic drug doxorubicin (DOXO) and the DO-24 monoclonal antibody (mAb) directed against the Met/Hepatocyte Growth Factor receptor (Met/HGFR), which is over-expressed on different types of carcinomas and thus represents a useful tumor target. The chemical-physical features of the nanoparticles are fully investigated and their interaction with cells expressing (GTL-16 gastric carcinoma line) or not expressing (NIH-3T3 fibroblasts) the Met/HGFR is analyzed. Functionalized nanoparticles specifically bind to and are internalized in cells expressing the receptor (GTL-16) but not in the ones that do not express it (NIH-3T3). Moreover they discharge DOXO in the targeted GTL-16 cells that reach the nucleus and display cytotoxicity as assessed in an MTT assay. Two different types of ternary nanoparticles are prepared, differing for the sequence of the functionalization steps (adsorption of DOXO first and then mAb or vice versa), and it is found that the ones in which mAb is adsorbed first are more efficient under all the examined aspects (binding, internalization, cytotoxicity), possibly because of a better mAb orientation on the nanoparticle surface. These multifunctional nanoparticles could thus be useful instruments for targeted local or systemic drug delivery, allowing a reduction in the therapeutic dose of the drug and thus adverse side effects. Moreover, this work opens new perspectives in the use of nanocrystalline apatites as a new platform for theranostic applications in nanomedicine.


Assuntos
Apatitas/química , Biomimética/métodos , Portadores de Fármacos/química , Nanopartículas/química , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Humanos , Camundongos , Células NIH 3T3 , Nanopartículas/administração & dosagem
9.
Langmuir ; 29(26): 8213-21, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23735159

RESUMO

In this work, the efficiency of bioinspired citrate-functionalized nanocrystalline apatites as nanocarriers for delivery of doxorubicin (DOXO) has been assessed. The nanoparticles were synthesized by thermal decomplexing of metastable calcium/citrate/phosphate solutions both in the absence (Ap) and in the presence (cAp) of carbonate ions. The presence of citrate and carbonate ions in the solution allowed us to tailor the size, shape, carbonate content, and surface chemistry of the nanoparticles. The drug-loading efficiency of the two types of apatite was evaluated by means of the adsorption isotherms, which were found to fit a Langmuir-Freundlich behavior. A model describing the interaction between apatite surface and DOXO is proposed from adsorption isotherms and ζ-potential measurements. DOXO is adsorbed as a dimer by means of a positively charged amino group that electrostatically interacts with negatively charged surface groups of nanoparticles. The drug-release profiles were explored at pHs 7.4 and 5.0, mimicking the physiological pH in the blood circulation and the more acidic pH in the endosome-lysosome intracellular compartment, respectively. After 7 days at pH 7.4, cAp-DOXO released around 42% less drug than Ap-DOXO. However, at acidic pH, both nanoassemblies released similar amounts of DOXO. In vitro assays analyzed by confocal microscopy showed that both drug-loaded apatites were internalized within GTL-16 human carcinoma cells and could release DOXO, which accumulated in the nucleus in short times and exerted cytotoxic activity with the same efficiency. cAp are thus expected to be a more promising nanocarrier for experiments in vivo, in situations where intravenous injection of nanoparticles are required to reach the targeted tumor, after circulating in the bloodstream.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Apatitas/química , Citrato de Cálcio/química , Carbonatos/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Nanopartículas/química , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Eletricidade Estática , Termodinâmica
10.
J Mater Sci Mater Med ; 23(11): 2659-69, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22864504

RESUMO

In this paper, hybrid inorganic-organic core-shell hollow microspheres, made of poly(L-lactic acid) (PLLA) and biomimetic nano apatites (HA), were prepared from biodegradable and biocompatible substances, suitable for bone tissue applications. Preparation is started from Pickering emulsification, i.e., solid particle-stabilized emulsions in the absence of any molecular surfactant, where solid particles adsorbed to an oil-water interface. Stable oil-in-water emulsions were produced using biomimetic 20 nm sized HA nanocrystals as particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLLA as oil phase. Hybrid hollow PLLA microspheres at three different HA nanocrystals surface coverage, ranging from 10 to 50 µm, were produced. The resulting materials were completely characterized with spectroscopic, calorimetric and microscopic techniques and the cytocompatibility was established by indirect contact tests with both fibroblasts and osteoblasts and direct contact with these latter. They displayed a high level of cytocompatibility and thus represent promising materials for drug delivery systems, cell carriers and scaffolds for regeneration of bone useful in the treatment of orthopaedic, maxillofacial and dental fields.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Ácido Láctico/química , Microesferas , Polímeros/química , Varredura Diferencial de Calorimetria , Células Cultivadas , Cristalização , Imunofluorescência , Humanos , Microscopia Eletrônica de Varredura , Osteoblastos/citologia , Tamanho da Partícula , Poliésteres , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Difração de Raios X
11.
Sci Rep ; 11(1): 3419, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564033

RESUMO

Nanosized fertilizers are the new frontier of nanotechnology towards a sustainable agriculture. Here, an efficient N-nanofertilizer is obtained by post-synthetic modification (PSM) of nitrate-doped amorphous calcium phosphate (ACP) nanoparticles (NPs) with urea. The unwasteful PSM protocol leads to N-payloads as large as 8.1 w/w%, is well replicated by using inexpensive technical-grade reagents for cost-effective up-scaling and moderately favours urea release slowdown. Using the PSM approach, the N amount is ca. 3 times larger than that obtained in an equivalent one-pot synthesis where urea and nitrate are jointly added during the NPs preparation. In vivo tests on cucumber plants in hydroponic conditions show that N-doped ACP NPs, with half absolute N-content than in conventional urea treatment, promote the formation of an equivalent amount of root and shoot biomass, without nitrogen depletion. The high nitrogen use efficiency (up to 69%) and a cost-effective preparation method support the sustainable real usage of N-doped ACP as a nanofertilizer.

12.
Acta Biomater ; 120: 167-180, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32438109

RESUMO

The occurrence of an amorphous calcium phosphate layer covering the crystalline apatite core has been suggested to be an intrinsic feature of both bone mineral and synthetic biomimetic analogs. However, an exahustive quantitative picture of the amorphous-crystalline relationship in these materials is still missing. Here, we present a multiple scale modelling that combines small-angle X-ray scattering (SAXS) and synchrotron wide-angle X-ray total scattering (WAXTS) analyses to investigate the amorphous-crystalline spatial interplay in bone sample and biomimetic carbonated nano-apatites. SAXS analysis indicates the presence of a single morphology consisting of tiny nanoplates (NPLs) and provides a measure of their thickness (falling in the 3-5 nm range). WAXTS analysis was performed by developing atomistic models of apatite NPLs incorporating lattice strain, mostly attributed to the carbonate content, and calculating the X-ray patterns using the Debye Scattering Equation. Upon model optimization, the size and strain parameters of the crystalline platelets were derived and the amorphous component, co-existing with the crystalline one, separated and quantified (in the 23-33 wt% range). Notably, the thickness of the apatite core was found to exhibit nearly null (bone) or minor (< 0.5 nm, biomimetic samples) deviations from that of the entire NPLs, suggesting that the amorphous material remains predominantly distributed along the lateral sides of the NPLs, in a core-crown-like arrangement. The lattice strain analysis indicates a significant stiffness along the c axis, which is comparable in bone and synthetic samples, and larger deformations in the other directions. STATEMENT OF SIGNIFICANCE: Current models of bone mineral and biomimetic nanoapatites suggest the occurrence of an amorphous layer covering the apatitic crystalline nanoplates in a core-shell arrangement. By combining X-ray scattering techniques in the small and wide angle regions, we propose a joint atomic-to-nanometre scale modelling to investigate the amorphous-crystalline interplay within the nanoplates. Estimates are extracted for the thickness of the entire nanoplates and the crystalline core, together with the quantification of the amorphous fraction and apatite lattice strain. Based on the thickness matching, the location of the amorphous material mostly along the edges of the nanoplates is inferred, with a vanishing or very thin layer in the thickness direction, suggesting a core-crown-like arrangement, with possible implications on the mineral surface reactivity.


Assuntos
Apatitas , Biomimética , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
13.
Biomolecules ; 11(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827629

RESUMO

Nitrogen composition on grapevines has a direct effect on the quality of wines since it contributes to develop certain volatile compounds and assists in the correct kinetics of alcoholic fermentation. Several strategies can be used to ensure nitrogen content in grapes and one of them could be the use of elicitors such as methyl jasmonate. The use of this elicitor has been proven to be efficient in the production of secondary metabolites which increases the quality of wines, but its use also has some drawbacks such as its low water solubility, high volatility, and its expensive cost. This study observes the impact on the amino acid and ammonium composition of must and wine of Monastrell grapes that have been treated with methyl jasmonate (MeJ) and methyl jasmonate n-doped calcium phosphate nanoparticles (MeJ-ACP). The first objective of this study was to compare the effect of these treatments to determine if the nitrogenous composition of the berries and wines increased. The second aim was to determine if the nanoparticle treatments showed similar effects to conventional treatments so that the ones which are more efficient and sustainable from an agricultural point of view can be selected. The results showed how both treatments increased amino acid composition in grapes and wines during two consecutive seasons and as well as the use of MeJ-ACP showed better results compared to MeJ despite using less quantity (1 mM compared to 10 mM typically). So, this application form of MeJ could be used as an alternative in order to carry out a more efficient and sustainable agriculture.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Nanopartículas/química , Nitrogênio/análise , Oxilipinas/farmacologia , Vitis/química , Vinho/análise , Aminoácidos/análise , Compostos de Amônio/análise , Análise Discriminante , Estações do Ano
14.
Acta Crystallogr D Struct Biol ; 74(Pt 12): 1200-1207, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30605134

RESUMO

The fragility of protein crystals plays an important role in the final quality of the diffraction data and therefore that of the derived three-dimensional structural model. The growth of protein crystals in gels of various natures has been shown to overcome this problem, facilitating the manipulation of the crystals; this is probably owing, amongst other factors, to the incorporation of the gel fibres within the body of the crystal. In this study, lysozyme crystals were grown in silica gel at a wide range of concentrations of up to 22%(v/v) to quantitatively determine the amount of gel incorporated into the crystal structure by means of thermogravimetric analysis. The interaction between the silica fibres and the lysozyme molecules within the crystals was also investigated using Raman spectroscopy and the direct influence on the crystalline protein stability was analysed using differential scanning calorimetry. Finally, the benefits of the use of gel-grown crystals to overgrow protein crystals intended for neutron diffraction are highlighted.


Assuntos
Cristalização/métodos , Muramidase/química , Difração de Nêutrons/métodos , Sílica Gel/química , Animais , Galinhas , Análise Espectral Raman , Termogravimetria
15.
Sci Rep ; 8(1): 17016, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451901

RESUMO

Demineralization of dental hard tissue is a widespread problem and the main responsible for dental caries and dentin hypersensitivity. The most promising strategies to induce the precipitation of new mineral phase are the application of materials releasing gradually Ca2+ and PO43- ions or mimicking the mineral phase of the host tissue. However, the design of formulations covering both processes is so far a challenge in preventive dentistry. In this work, we have synthesized innovative biomimetic amorphous calcium phosphate (ACP), which has been, for the first time, doped with fluoride ions (FACP) to obtain materials with enhanced anti-caries and remineralizing properties. Significantly, the doping with fluoride (F) did not vary the physico-chemical features of ACP but resulted in a faster conversion to the crystalline apatite phase in water, as observed by in-situ time-dependent Raman experiments. The efficacy of the as synthesized ACP and FACP samples to occlude dentinal tubules and induce enamel remineralization has been tested in vitro in human molar teeth. The samples showed good ability to partially occlude the tubules of acid-etched dentin and to restore demineralized enamel into its native structure. Results demonstrate that ACP and FACP are promising biomimetic materials in preventive dentistry to hinder demineralization of dental hard tissues.


Assuntos
Biomimética , Fosfatos de Cálcio/química , Fluoretos/química , Nanopartículas/química , Remineralização Dentária/métodos , Sensibilidade da Dentina , Análise Espectral Raman
16.
Sci Rep ; 7(1): 8901, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827557

RESUMO

The surface structure and hydrophilicity of synthetic nanocrystalline apatite with strongly bound citrates on their surface are here investigated at the molecular level, by combining advanced IR spectroscopy, microgravimetry and adsorption microcalorimetry. Citrate are found to form unidentate-like and ionic-like complexes with surface Ca2+ ions, with a surface coverage closely resembling that present in bone apatite platelets (i.e., 1 molecule/(n nm)2, with n ranging between 1.4 and 1.6). These surface complexes are part of a hydrated non-apatitic surface layer with a sub-nanometre thickness. Noticeably, it is found that the hydrophilicity of the nanoparticles, measured in terms of adsorption of water molecules in the form of multilayers, decreases in a significant extent in relation to the presence of citrates, most likely because of the exposure toward the exterior of -CH2 groups. Our findings provide new insights on the surface properties of bio-inspired nano-apatites, which can be of great relevance for better understanding the role of citrate in determining important interfacial properties, such as hydrophobicity, of bone apatite platelets. The evaluation and comprehension of surface composition and structure is also of paramount interest to strictly control the functions of synthetic biomaterials, since their surface chemistry strongly affects the hosting tissue response.

17.
Acta Biomater ; 49: 555-562, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872013

RESUMO

Bioinspired in vitro collagen mineralization experiments have been performed in the presence of citrate and the combined role of the two bone organic matrix components in controlling mineral formation was investigated for the first time. Mineralized and non-mineralized collagen fibrils have been in depth characterized by combining small- and wide-angle X-ray scattering (SAXS/WAXS) techniques with Atomic Force Microscopy (AFM) imaging. A synergic effect of collagen and citrate in driving the formation of long-term stable amorphous calcium phosphate (ACP) nanoparticles with platy morphology was found. AFM images on mineralized collagen fibrils revealed that some of the ACP nanoparticles were deposited on the intramolecular nanoscopic holes of collagen fibrils. STATEMENT OF SIGNIFICANCE: Citrate is an important component of the bone organic matrix but its specific role in bone mineralization is presently unclear. In this work, bioinspired in vitro collagen mineralization experiments in the presence of citrate have been carried out and the combined role of collagen and citrate in controlling mineral formation has been addressed for the first time. Through X-ray scattering and Atomic Force Microscopy characterizations on mineralized and non-mineralized collagen fibrils, we have found that citrate in synergy with collagen stabilizes an amorphous calcium phosphate (ACP) phase with platy morphology over one week and controls its deposition on collagen fibrils.


Assuntos
Fosfatos de Cálcio/química , Ácido Cítrico/química , Colágeno/química , Animais , Calcificação Fisiológica , Cavalos , Microscopia de Força Atômica , Espalhamento a Baixo Ângulo , Difração de Raios X
18.
ACS Appl Mater Interfaces ; 7(19): 10623-33, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915450

RESUMO

In recent years, biomimetic synthetic apatite nanoparticles (AP-NPs), having chemical similarity with the mineral phase of bone, have attracted a great interest in nanomedicine as potential drug carriers. To evaluate the therapeutic perspectives of AP-NPs through the mechanisms of action and organs they interact with, the noninvasive monitoring of their in vivo behavior is of paramount importance. To this aim, here the feasibility to radiolabel AP-NPs ("naked" and surface-modified with citrate to reduce their aggregation) with two positron emission tomographic (PET) imaging agents ([(18)F]NaF and (68)Ga-NO2AP(BP)) was investigated. [(18)F]NaF was used for the direct incorporation of the radioisotope into the crystal lattice, while the labeling by surface functionalization was accomplished by using (68)Ga-NO2AP(BP) (a new radio-metal chelating agent). The labeling results with both tracers were fast, straightforward, and reproducible. AP-NPs demonstrated excellent ability to bind relevant quantities of both radiotracers and good in vitro stability in clinically relevant media after the labeling. In vivo PET studies in healthy Wistar rats established that the radiolabeled AP-NPs gave significant PET signals and they were stable over the investigated time (90 min) since any tracer desorption was detected. These preliminary in vivo studies furthermore showed a clear ability of citrated versus naked AP-NPs to accumulate in different organs. Interestingly, contrary to naked AP-NPs, citrated ones, which unveiled higher colloidal stability in aqueous suspensions, were able to escape the first physiological filter, i.e., the lungs, being then accumulated in the liver and, to a lesser extent, in the spleen. The results of this work, along with the fact that AP-NPs can be also functionalized with targeting ligands, with therapeutic agents, and also with metals for a combination of different imaging modalities, make AP-NPs very encouraging materials for further investigations as theranostic agents in nanomedicine.


Assuntos
Apatitas/química , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanopartículas/química , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Animais , Materiais Biomiméticos/síntese química , Coloides/química , Cristalização/métodos , Difusão , Estudos de Viabilidade , Marcação por Isótopo/métodos , Masculino , Teste de Materiais/métodos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Projetos Piloto , Ratos Wistar , Imagem Corporal Total/métodos
19.
J Inorg Biochem ; 127: 261-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23648093

RESUMO

In this paper the crystallization of a bioinspired citrate-functionalized apatite (cit-Ap) thin film (thickness about 2µm) on Ti-6Al-4V supports pre-coated with bioactive and corrosion resistant buffer layer of silicon nitride (Si3N4), silicon carbide (SiC) or titanium nitride (TiN) is reported. The apatitic coatings were produced by a new coating technique based on the induction heating of the implants immersed in a flowing calcium-citrate-phosphate solution at pH11. The influence of the buffer layers and the surface roughness of the substrate on the chemical-physical features and adhesion of the cit-Ap films were investigated. The best plasticity, compactness and adherence properties have been found in the Ap layer grown on Si3N4, followed by the Ap grown on SiC and TiN, respectively. The adhesion property was likely related to the roughness of the buffered substrates, whereas the compactness and plasticity were closely related to the operating conditions during the Ap crystallization (flow rate of the solution and increase of temperature) rather than to the nature of the buffer layer.


Assuntos
Alumínio/química , Apatitas/química , Ácido Cítrico/química , Titânio/química , Vanádio/química , Implantes Dentários , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Difração de Raios X
20.
Acta Biomater ; 8(9): 3491-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22579712

RESUMO

Novel citrate-functionalized carbonate-apatite nanoparticles with mean lengths ranging from 20 to 100 nm were synthesized by a thermal-decomplexing batch method. Needle-like and plate-shaped morphologies were obtained in the absence and presence of sodium carbonate in the precipitation medium, respectively. The precipitation time and the presence of sodium carbonate strongly affect the chemical composition as well as the dimensions and the crystallinity of nanoparticles. At a short precipitation time, poorly crystalline apatites of 100 nm mean length with a low degree of carbonation (1.5% w/w, mainly in B-position) and a high citrate content (5.9% w/w) were precipitated. This citrate content is close to that recently measured in bone apatite. When increasing the precipitation time up to 96 h the mean length and the citrate content progressively decrease and at the same time the nanoparticles become more crystalline. They are composed of a well-ordered carbonate-substituted apatitic core embedded in a non-apatitic hydrated layer containing citrate ions. This layer progressively transforms into a more stable apatite domain upon maturation in aqueous media. The nanoparticles displayed excellent compatibility properties in cell biological systems, since they were not cytotoxic to a mouse carcinoma cell line when added to a final concentration of 100 µgml(-1). This work provides new insights into the role of citrate on the crystallization of nanoapatites. Moreover, the synthesized nanoparticles are promising materials for use as nanocarriers for local targeted drug delivery systems as well as building blocks for the preparation of nanostructured scaffolds for cells in bone tissue engineering.


Assuntos
Apatitas/química , Carbonatos/análise , Citratos/química , Cristalização , Nanopartículas , Animais , Linhagem Celular , Cristalografia por Raios X , Camundongos , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA