Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(18)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487885

RESUMO

Use of fiber Bragg gratings (FBGs) to monitor high temperature (HT) applications is of great interest to the research community. Standard commercial FBGs can operate up to 600 ∘ C. For applications beyond that value, specific processing of the FBGs must be adopted to allow the grating not to deteriorate. The most common technique used to process FBGs for HT applications is the regeneration procedure (RP), which typically extends their use up to 1000 ∘ C. RP involves a long-term annealing of the FBGs, to be done at a temperature ranging from 550 to 950 ∘ C. As at that temperature, the original coating of the FBGs would burn out, they shall stay uncoated, and their brittleness is a serious concern to deal with. Depositing a metal coating on the FBGs prior to process them for RP offers an effective solution to provide them with the necessary mechanical strengthening. In this paper, a procedure to provide the FBG with a bimetallic coating made by copper and nickel electrodeposition (ED) is proposed, discussing issues related to the coating morphology, adherence to the fiber, and effects on the grating spectral response. To define the processing parameters of the proposed procedure, production tests were performed on dummy samples which were used for destructive SEM-EDS analysis. As a critical step, the proposed procedure was shown to necessitate a heat treatment after the nickel ED, to remove the absorbed hydrogen. The spectral response of the FBG samples was monitored along the various steps of the proposed procedure and, as a final proof test for adherence stability of the bimetallic coating, along a heating/cooling cycle from room temperature to 1010 ∘ C. The results suggest that, given the emergence of Kirkendall voids at the copper-nickel interface, occurring at the highest temperatures (700-1010 ∘ C), the bimetallic layer could be employed as FBG coating up to 700 ∘ C.

2.
Materials (Basel) ; 17(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255631

RESUMO

In this paper, a critical review of results obtained using a reticulated vitreous carbon (RVC) three-dimensional cathode for the electrochemical depletion of various divalent ions, such as Cu+2, Cd+2, Pb+2, Zn+2, Ni+2, and Co+2, often present in wastewater, has been carried out. By analyzing the kinetics and fluid dynamics of the process found in literature, a general dimensionless equation, Sh = f(Re), has been determined, describing a general trend for all the analyzed systems regardless of the geometry, dimensions, and starting conditions. Thus, a map in the log(Sh) vs. log(Re) plane has been reported by characterizing the whole ion electrochemical depletion process and highlighting the existence of a good correlation among all the results. Moreover, because in recent years, the interest in using this three-dimensional cathode material seems to have slowed, the intent is to revive it as a useful tool for metal recovery, recycling processes, and water treatments.

3.
Sci Technol Adv Mater ; 12(4): 045004, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877423

RESUMO

The acoustic emission technique is proposed for assessing the irreversible phenomena occurring during hydrogen absorption/desorption cycling in LaNi5. In particular, we have studied, through a parametric analysis of in situ detected signals, the correlation between acoustic emission (AE) parameters and the processes occurring during the activation of an intermetallic compound. Decreases in the number and amplitude of AE signals suggest that pulverization due to hydrogen loading involves progressively smaller volumes of material as the number of cycles increases. This conclusion is confirmed by electron microscopy observations and particle size distribution measurements.

4.
Materials (Basel) ; 11(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439383

RESUMO

SiO2-based organic-inorganic hybrids (OIHs) are versatile materials whose properties may change significantly because of their thermal treatment. In fact, after their preparation at low temperature by the sol-gel method, they still have reactive silanol groups due to incomplete condensation reactions that can be removed by accelerating these processes upon heating them in controlled experimental conditions. In this study, the thermal behavior of pure SiO2 and four SiO2-based OIHs containing increasing amount (6, 12, 24 and 50 wt %) of poly(ε-caprolactone) (PCL) has been studied by simultaneous thermogravimetry (TG) and differential scanning calorimetry (DSC). The FTIR analysis of the gas mixture evolved at defined temperatures from the samples submitted to the TG experiments identified the mechanisms of thermally activated processes occurring upon heating. In particular, all samples already release ethanol at low temperature. Moreover, thermal degradation of PCL takes place in the richest-PCL sample, leading to 5-hexenoic acid, H2O, CO2, CO and ε-caprolactone. After the samples' treatment at 450, 600 and 1000 °C, the X-ray diffraction (XRD) spectra revealed that they were still amorphous, while the presence of cristobalite is found in the richest-PCL material.

5.
Materials (Basel) ; 11(12)2018 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-30477212

RESUMO

Titanium biomaterials' response has been recognized to be affected by particles size, crystal structure, and surface properties. Chemical and structural properties of these nanoparticle materials are important, but their size is the key aspect. The aim of this study is the synthesis of TiO2 nanoparticles by the sol-gel method, which is an ideal technique to prepare nanomaterials at low temperature. The heat treatment can affect the structure of the final product and consequently its biological properties. For this reason, the chemical structure of the TiO2 nanoparticles synthesized was investigated after each heat treatment, in order to evaluate the presence of different phases formed among the nanoparticles. FTIR spectroscopy and XRD have been used to evaluate the different structures. The results of these analyses suggest that an increase of the calcination temperature induces the formation of mixed-crystalline-phases with different content of anatase and rutile phases. The results obtained by SEM measurements suggest that an increase in the particles size accompanied by a noticeable aggregation of TiO2 nanoparticles is due to high temperatures achieved during the thermal treatments and confirmed the presence of different content of the two crystalline phases of titanium dioxide.

6.
Materials (Basel) ; 11(1)2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-29301206

RESUMO

The synthesis of organic-inorganic hybrid compounds based on phenylphosphonate and their use as precursors to form LiMnxFe(1-x)PO4 composites containing carbonaceous substances with sub-micrometric morphology are presented. The experimental procedure includes the preliminary synthesis of Fe2+ and/or Mn2+ phenylphosphonates with the general formula Fe(1-x)Mnx[(C6H5PO3)(H2O)] (with 0 < x < 1), which are then mixed at different molar ratios with lithium carbonate. In this way the carbon, obtained from in situ partial oxidation of the precursor organic part, coats the LiMnxFe(1-x)PO4 particles. After a structural and morphological characterization, the electrochemical behavior of lithium iron manganese phosphates has been compared to the one of pristine LiFePO4 and LiMnPO4, in order to evaluate the doping influence on the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA