Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 546(7656): 107-112, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538730

RESUMO

Menopause is associated with bone loss and enhanced visceral adiposity. A polyclonal antibody that targets the ß-subunit of the pituitary hormone follicle-stimulating hormone (Fsh) increases bone mass in mice. Here, we report that this antibody sharply reduces adipose tissue in wild-type mice, phenocopying genetic haploinsufficiency for the Fsh receptor gene Fshr. The antibody also causes profound beiging, increases cellular mitochondrial density, activates brown adipose tissue and enhances thermogenesis. These actions result from the specific binding of the antibody to the ß-subunit of Fsh to block its action. Our studies uncover opportunities for simultaneously treating obesity and osteoporosis.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade , Subunidade beta do Hormônio Folículoestimulante/antagonistas & inibidores , Termogênese , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Subunidade beta do Hormônio Folículoestimulante/imunologia , Haploinsuficiência , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Osteoporose/tratamento farmacológico , Ovariectomia , Consumo de Oxigênio/efeitos dos fármacos , Receptores do FSH/antagonistas & inibidores , Receptores do FSH/genética , Receptores do FSH/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/biossíntese
2.
Proc Natl Acad Sci U S A ; 117(46): 28971-28979, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127753

RESUMO

Blocking the action of FSH genetically or pharmacologically in mice reduces body fat, lowers serum cholesterol, and increases bone mass, making an anti-FSH agent a potential therapeutic for three global epidemics: obesity, osteoporosis, and hypercholesterolemia. Here, we report the generation, structure, and function of a first-in-class, fully humanized, epitope-specific FSH blocking antibody with a KD of 7 nM. Protein thermal shift, molecular dynamics, and fine mapping of the FSH-FSH receptor interface confirm stable binding of the Fab domain to two of five receptor-interacting residues of the FSHß subunit, which is sufficient to block its interaction with the FSH receptor. In doing so, the humanized antibody profoundly inhibited FSH action in cell-based assays, a prelude to further preclinical and clinical testing.


Assuntos
Tecido Adiposo/metabolismo , Anticorpos Bloqueadores/imunologia , Osso e Ossos/metabolismo , Epitopos , Hormônio Foliculoestimulante/imunologia , Animais , Anticorpos Bloqueadores/química , Anticorpos Monoclonais , Densidade Óssea , Feminino , Hormônio Foliculoestimulante/química , Subunidade beta do Hormônio Folículoestimulante/imunologia , Humanos , Hipercolesterolemia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Obesidade , Osteoporose , Receptores do FSH/metabolismo
3.
Mol Psychiatry ; 25(5): 939-950, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30356120

RESUMO

Genetic factors do not fully account for the relatively high heritability of neurodevelopmental conditions, suggesting that non-genetic heritable factors contribute to their etiology. To evaluate the potential contribution of aberrant thyroid hormone status to the epigenetic inheritance of neurological phenotypes, we examined genetically normal F2 generation descendants of mice that were developmentally overexposed to thyroid hormone due to a Dio3 mutation. Hypothalamic gene expression profiling in postnatal day 15 F2 descendants on the paternal lineage of ancestral male and female T3-overexposed mice revealed, respectively, 1089 and 1549 differentially expressed genes. A large number of them, 675 genes, were common to both sets, suggesting comparable epigenetic effects of thyroid hormone on both the male and female ancestral germ lines. Oligodendrocyte- and neuron-specific genes were strongly overrepresented among genes showing, respectively, increased and decreased expression. Altered gene expression extended to other brain regions and was associated in adulthood with decreased anxiety-like behavior, increased marble burying and reduced physical activity. The sperm of T3-overexposed male ancestors revealed significant hypomethylation of CpG islands associated with the promoters of genes involved in the early development of the central nervous system. Some of them were candidates for neurodevelopmental disorders in humans including Nrg3, Nrxn1, Gabrb3, Gabra5, Apba2, Grik3, Reln, Nsd1, Pcdh8, En1, and Elavl2. Thus, developmental levels of thyroid hormone influence the epigenetic information of the germ line, disproportionately affecting genes with critical roles in early brain development, and leading in future generations to disease-relevant alterations in postnatal brain gene expression and adult behavior.


Assuntos
Comportamento Animal/fisiologia , Epigênese Genética/fisiologia , Expressão Gênica/fisiologia , Células Germinativas/fisiologia , Hipotálamo/metabolismo , Padrões de Herança/fisiologia , Hormônios Tireóideos/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Ilhas de CpG/genética , Metilação de DNA , Feminino , Iodeto Peroxidase/genética , Masculino , Camundongos , Mutação , Proteína Reelina
4.
J Biol Chem ; 294(34): 12683-12694, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31266807

RESUMO

Metabolic programming of bone marrow stromal cells (BMSCs) could influence the function of progenitor osteoblasts or adipocytes and hence determine skeletal phenotypes. Adipocytes predominantly utilize oxidative phosphorylation, whereas osteoblasts use glycolysis to meet ATP demand. Here, we compared progenitor differentiation from the marrow of two inbred mouse strains, C3H/HeJ (C3H) and C57BL6J (B6). These strains differ in both skeletal mass and bone marrow adiposity. We hypothesized that genetic regulation of metabolic programs controls skeletal stem cell fate. Our experiments identified Bcl-2-like protein 13 (Bcl2l13), a mitochondrial mitophagy receptor, as being critical for adipogenic differentiation. We also found that Bcl2l13 is differentially expressed in the two mouse strains, with C3H adipocyte progenitor differentiation being accompanied by a >2-fold increase in Bcl2l13 levels relative to B6 marrow adipocytes. Bcl2l13 expression also increased during adipogenic differentiation in mouse ear mesenchymal stem cells (eMSCs) and the murine preadipocyte cell line 3T3-L1. The higher Bcl2l13 expression correlated with increased mitochondrial fusion and biogenesis. Importantly, Bcl2l13 knockdown significantly impaired adipocyte differentiation in both 3T3-L1 cells and eMSCs. Mechanistically, Bcl2l13 knockdown reprogrammed cells to rely more on glycolysis to meet ATP demand in the face of impaired oxidative phosphorylation. Bcl2l13 knockdown in eMSCs increased mitophagy. Moreover, Bcl2l13 prevented apoptosis during adipogenesis. Our findings indicate that the mitochondrial receptor Bcl2l13 promotes adipogenesis by increasing oxidative phosphorylation, suppressing apoptosis, and providing mitochondrial quality control through mitophagy. We conclude that genetic programming of metabolism may be important for lineage determination and cell function within the bone marrow.


Assuntos
Adipogenia/genética , Apoptose , Mitocôndrias/metabolismo , Mitofagia , Fosforilação Oxidativa , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
5.
FASEB J ; 33(2): 2885-2898, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30354669

RESUMO

Intermittent administration of parathyroid hormone (PTH) stimulates bone formation in vivo and also suppresses the volume of bone marrow adipose tissue (BMAT). In contrast, a calorie-restricted (CR) diet causes bone loss and induces BMAT in both mice and humans. We used the CR model to test whether PTH would reduce BMAT in mice by both altering cell fate and inducing lipolysis of marrow adipocytes. Eight-week-old mice were placed on a control (Ctrl) diet or CR diet. At 12 wk, CR and Ctrl mice were injected daily with PTH (CR/PTH or Ctrl/PTH) or vehicle for 4 wk. Two other cohorts were CR and simultaneously injected (CR + PTH or CR + Veh) for 4 wk. CR mice had low bone mass and increased BMAT in the proximal tibias. PTH significantly increased bone mass in all cohorts despite calorie restrictions. Adipocyte density and size were markedly increased with restriction of calories. PTH reduced adipocyte numbers in CR + PTH mice, whereas adipocyte size was reduced in CR/PTH-treated mice. In contrast, osteoblast number was increased 3-8-fold with PTH treatment. In vitro, bone marrow stromal cells differentiated into adipocytes and, treated with PTH, exhibited increased production of glycerol and fatty acids. Moreover, in cocultures of bone marrow adipocyte and osteoblast progenitors, PTH stimulated the transfer of fatty acids to osteoblasts. In summary, PTH administration to CR mice increased bone mass by shifting lineage allocation toward osteogenesis and inducing lipolysis of mature marrow adipocytes. The effects of PTH on bone marrow adiposity could enhance its anabolic actions by providing both more cells and more fuel for osteoblasts during bone formation.-Maridas, D. E., Rendina-Ruedy, E., Helderman, R. C., DeMambro, V. E., Brooks, D., Guntur, A. R., Lanske, B., Bouxsein, M. L., Rosen, C. J. Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton.


Assuntos
Adipócitos/citologia , Reabsorção Óssea/tratamento farmacológico , Lipólise/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Hormônio Paratireóideo/farmacologia , Células-Tronco/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Restrição Calórica , Diferenciação Celular , Células Cultivadas , Feminino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
6.
J Cell Physiol ; 234(11): 19121-19129, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30941770

RESUMO

Damage-associated molecular patterns, including mitochondrial DNA (mtDNA) are released during hemorrhage resulting in the development of endotheliopathy. Tranexamic acid (TXA), an antifibrinolytic drug used in hemorrhaging patients, enhances their survival despite the lack of a comprehensive understanding of its cellular mechanisms of action. The present study is aimed to elucidate these mechanisms, with a focus on mitochondria. We found that TXA inhibits the release of endogenous mtDNA from granulocytes and endothelial cells. Furthermore, TXA attenuates the loss of the endothelial monolayer integrity induced by exogenous mtDNA. Using the Seahorse XF technology, it was demonstrated that TXA strongly stimulates mitochondrial respiration. Studies using Mitotracker dye, cells derived from mito-QC mice, and the ActivSignal IPAD assay, indicate that TXA stimulates biogenesis of mitochondria and inhibits mitophagy. These findings open the potential for improvement of the strategies of TXA applications in trauma patients and the development of more efficient TXA derivatives.


Assuntos
DNA Mitocondrial/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Ácido Tranexâmico/farmacologia , Ferimentos e Lesões/tratamento farmacológico , Animais , Dano ao DNA/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Granulócitos/efeitos dos fármacos , Hemorragia/genética , Hemorragia/patologia , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia
7.
J Cell Physiol ; 233(2): 1156-1167, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28460416

RESUMO

The bone marrow niche is a dynamic and complex microenvironment that can both regulate, and be regulated by the bone matrix. Within the bone marrow (BM), mesenchymal stromal cell (MSC) precursors reside in a multi-potent state and retain the capacity to differentiate down osteoblastic, adipogenic, or chondrogenic lineages in response to numerous biochemical cues. These signals can be altered in various pathological states including, but not limited to, osteoporotic-induced fracture, systemic adiposity, and the presence of bone-homing cancers. Herein we provide evidence that signals from the bone matrix (osteocytes) determine marrow adiposity by regulating adipogenesis in the bone marrow. Specifically, we found that physiologically relevant levels of Sclerostin (SOST), which is a Wnt-inhibitory molecule secreted from bone matrix-embedded osteocytes, can induce adipogenesis in 3T3-L1 cells, mouse ear- and BM-derived MSCs, and human BM-derived MSCs. We demonstrate that the mechanism of SOST induction of adipogenesis is through inhibition of Wnt signaling in pre-adipocytes. We also demonstrate that a decrease of sclerostin in vivo, via both genetic and pharmaceutical methods, significantly decreases bone marrow adipose tissue (BMAT) formation. Overall, this work demonstrates a direct role for SOST in regulating fate determination of BM-adipocyte progenitors. This provides a novel mechanism for which BMAT is governed by the local bone microenvironment, which may prove relevant in the pathogenesis of certain diseases involving marrow adipose. Importantly, with anti-sclerostin therapy at the forefront of osteoporosis treatment and a greater recognition of the role of BMAT in disease, these data are likely to have important clinical implications.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Células da Medula Óssea/metabolismo , Glicoproteínas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteócitos/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal , Tecido Adiposo/citologia , Adiposidade , Animais , Meios de Cultivo Condicionados/metabolismo , Glicoproteínas/deficiência , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comunicação Parácrina , Fenótipo , Nicho de Células-Tronco , Via de Sinalização Wnt
8.
J Cell Physiol ; 233(2): 1585-1600, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28631813

RESUMO

There is a growing and alarming prevalence of obesity and the metabolic syndrome in type I diabetic patients (T1DM), particularly in adolescence. In general, low bone mass, higher fracture risk, and increased marrow adipose tissue (MAT) are features of diabetic osteopathy in insulin-deficient subjects. On the other hand, type 2 diabetes (T2DM) is associated with normal or high bone mass, a greater risk of peripheral fractures, and no change in MAT. Therefore, we sought to determine the effect of weight gain on bone turnover in insulin-deficient mice. We evaluated the impact of a 6-week high-fat (HFD) rich in medium chain fatty acids or low-fat diet (LFD) on bone mass and MAT in a streptozotocin (STZ)-induced model using male C57BL/6J mice at 8 weeks of age. Dietary intervention was initiated after diabetes confirmation. At the endpoint, lower non-fasting glucose levels were observed in diabetic mice fed with high fat diet compared to diabetic mice fed the low fat diet (STZ-LFD). Compared to euglycemic controls, the STZ-LFD had marked polydipsia and polyphagia, as well as reduced lean mass, fat mass, and bone parameters. Interestingly, STZ-HFD mice had higher bone mass, namely less cortical bone loss and more trabecular bone than STZ-LFD. Thus, we found that a HFD, rich in medium chain fatty acids, protects against bone loss in a T1DM mouse model. Whether this may also translate to T1DM patients who are overweight or obese in respect to maintenance of bone mass remains to be determined through longitudinal studies.


Assuntos
Glicemia/metabolismo , Composição Corporal , Remodelação Óssea , Diabetes Mellitus Experimental/dietoterapia , Diabetes Mellitus Tipo 1/dietoterapia , Dieta Hiperlipídica , Ácidos Graxos/administração & dosagem , Osteoporose/prevenção & controle , Estreptozocina , Adiposidade , Animais , Biomarcadores/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/fisiopatologia , Insulina/sangue , Cetonas/sangue , Masculino , Camundongos Endogâmicos C57BL , Osteoporose/sangue , Osteoporose/induzido quimicamente , Osteoporose/fisiopatologia , Fatores de Tempo , Redução de Peso
9.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559245

RESUMO

Multiple myeloma (MM) is an incurable cancer of plasma cells with a 5-year survival rate of 59%. Dysregulation of fatty acid (FA) metabolism is associated with MM development and progression; however, the underlying mechanisms remain unclear. Acyl-CoA synthetase long-chain family members (ACSLs) convert free long-chain fatty acids into fatty acyl-CoA esters and play key roles in catabolic and anabolic fatty acid metabolism. The Cancer Dependency Map data suggested that ACSL3 and ACSL4 were among the top 25% Hallmark Fatty Acid Metabolism genes that support MM fitness. Here, we show that inhibition of ACSLs in human myeloma cell lines using the pharmacological inhibitor Triascin C (TriC) causes apoptosis and decreases proliferation in a dose- and time-dependent manner. RNA-seq of MM.1S cells treated with TriC for 24 h showed a significant enrichment in apoptosis, ferroptosis, and ER stress. Proteomics of MM.1S cells treated with TriC for 48 h revealed that mitochondrial dysfunction and oxidative phosphorylation were significantly enriched pathways of interest, consistent with our observations of decreased mitochondrial membrane potential and increased mitochondrial superoxide levels. Interestingly, MM.1S cells treated with TriC for 24 h also showed decreased mitochondrial ATP production rates and overall lower cellular respiration.

10.
J Mol Cell Biol ; 14(9)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36581316

RESUMO

Thyroid hormone excess secondary to global type 3 deiodinase (DIO3) deficiency leads to increased locomotor activity and reduced adiposity, but also to concurrent alterations in parameters of the leptin-melanocortin system that would predict obesity. To distinguish the underlying contributions to the energy balance phenotype of DIO3 deficiency, we generated mice with thyroid hormone excess targeted to pro-opiomelanocortin (POMC)-expressing cells via cell-specific DIO3 inactivation. These mice exhibit a male-specific phenotype of reduced hypothalamic Pomc expression, hyperphagia, and increased activity in brown adipose tissue, with adiposity and serum levels of leptin and thyroid hormones remained normal. These male mice also manifest a marked and widespread hypothalamic reduction in the expression of bone morphogenetic receptor 1a (BMPR1A), which has been shown to cause similar phenotypes when inactivated in POMC-expressing cells. Our results indicate that developmental overexposure to thyroid hormone in POMC-expressing cells programs energy balance mechanisms in a sexually dimorphic manner by suppressing adult hypothalamic BMPR1A expression.


Assuntos
Tecido Adiposo Marrom , Pró-Opiomelanocortina , Hormônios Tireóideos , Animais , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Hormônios Tireóideos/metabolismo
11.
Bone Rep ; 19: 101705, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37576927

RESUMO

Parathyroid hormone acts through its receptor, PTHR1, expressed on osteoblasts, to control bone remodeling. Metabolic flexibility for energy generation has been demonstrated in several cell types dependent on substrate availability. Recent studies have identified a critical role for PTH in regulating glucose, fatty acid and amino acid metabolism thus stimulating both glycolysis and oxidative phosphorylation. Therefore, we postulated that PTH stimulates increased energetic output by osteoblasts either by increasing glycolysis or oxidative phosphorylation depending on substrate availability. To test this hypothesis, undifferentiated and differentiated MC3T3E1C4 calvarial pre-osteoblasts were treated with PTH to study osteoblast bioenergetics in the presence of exogenous glucose. Significant increases in glycolysis with acute ∼1 h PTH treatment with minimal effects on oxidative phosphorylation in undifferentiated MC3T3E1C4 in the presence of exogenous glucose were observed. In differentiated cells, the increased glycolysis observed with acute PTH was completely blocked by pretreatment with a Glut1 inhibitor (BAY-876) resulting in a compensatory increase in oxidative phosphorylation. We then tested the effect of PTH on the function of complexes I and II of the mitochondrial electron transport chain in the absence of glycolysis. Utilizing a novel cell plasma membrane permeability mitochondrial (PMP) assay, in combination with complex I and II specific substrates, slight but significant increases in basal and maximal oxygen consumption rates with 24 h PTH treatment in undifferentiated MC3T3E1C4 cells were noted. Taken together, our data demonstrate for the first time that PTH stimulates both increases in glycolysis and the function of the electron transport chain, particularly complexes I and II, during high energy demands in osteoblasts.

12.
Elife ; 122023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880649

RESUMO

Multiple myeloma is an incurable plasma cell malignancy with only a 53% 5-year survival rate. There is a critical need to find new multiple myeloma vulnerabilities and therapeutic avenues. Herein, we identified and explored a novel multiple myeloma target: the fatty acid binding protein (FABP) family. In our work, myeloma cells were treated with FABP inhibitors (BMS3094013 and SBFI-26) and examined in vivo and in vitro for cell cycle state, proliferation, apoptosis, mitochondrial membrane potential, cellular metabolism (oxygen consumption rates and fatty acid oxidation), and DNA methylation properties. Myeloma cell responses to BMS309403, SBFI-26, or both, were also assessed with RNA sequencing (RNA-Seq) and proteomic analysis, and confirmed with western blotting and qRT-PCR. Myeloma cell dependency on FABPs was assessed using the Cancer Dependency Map (DepMap). Finally, MM patient datasets (CoMMpass and GEO) were mined for FABP expression correlations with clinical outcomes. We found that myeloma cells treated with FABPi or with FABP5 knockout (generated via CRISPR/Cas9 editing) exhibited diminished proliferation, increased apoptosis, and metabolic changes in vitro. FABPi had mixed results in vivo, in two pre-clinical MM mouse models, suggesting optimization of in vivo delivery, dosing, or type of FABP inhibitors will be needed before clinical applicability. FABPi negatively impacted mitochondrial respiration and reduced expression of MYC and other key signaling pathways in MM cells in vitro. Clinical data demonstrated worse overall and progression-free survival in patients with high FABP5 expression in tumor cells. Overall, this study establishes the FABP family as a potentially new target in multiple myeloma. In MM cells, FABPs have a multitude of actions and cellular roles that result in the support of myeloma progression. Further research into the FABP family in MM is warrented, especially into the effective translation of targeting these in vivo.


Multiple myeloma is a type of blood cancer for which only a few treatments are available. Currently, only about half the patients with multiple myeloma survive for five years after diagnosis. Because obesity is a risk factor for multiple myeloma, researchers have been studying how fat cells or fatty acids affect multiple myeloma tumor cells to identify new treatment targets. Fatty acid binding proteins (FABPs) are one promising target. The FABPs shuttle fatty acids and help cells communicate. Previous studies linked FABPs to some types of cancer, including another blood cancer called leukemia, and cancers of the prostate and breast. A recent study showed that patients with multiple myeloma, who have high levels of FABP5 in their tumors, have worse outcomes than patients with lower levels. But, so far, no one has studied the effects of inhibiting FABPs in multiple myeloma tumor cells or animals with multiple myeloma. Farrell et al. show that blocking or eliminating FABPs kills myeloma tumor cells and slows their growth in a dish (in vitro) and in some laboratory mice. In the experiments, the researchers treated myeloma cells with drugs that inhibit FABPs or genetically engineered myeloma cells to lack FABPs. They also show that blocking FABPs reduces the activity of a protein called MYC, which promotes tumor cell survival in many types of cancer. It also changed the metabolism of the tumor cell. Finally, the team examined data collected from several sets of patients with multiple myeloma and found that patients with high FABP levels have more aggressive cancer. The experiments lay the groundwork for more studies to determine if drugs or other therapies targeting FABPs could treat multiple myeloma. More research is needed to determine why inhibiting FABPs worked in some mice with multiple myeloma but not others, and whether FABP inhibitors might work better if combined with other cancer therapies. There were no signs that the drugs were toxic in mice, but more studies must prove they are safe and effective before testing the drugs in humans with multiple myeloma. Designing better or more potent FABP-blocking drugs may also lead to better animal study results.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Mieloma Múltiplo/genética , Proteômica , Ciclo Celular , Proteínas de Ligação a Ácido Graxo/genética
13.
J Biol Chem ; 286(16): 14670-80, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21372140

RESUMO

Insulin-like growth factor-binding protein 2 (IGFBP-2) is a member of a family of six highly conserved IGFBPs that are carriers for the insulin-like growth factors (IGFs). IGFBP-2 levels rise during rapid neonatal growth and at the time of peak bone acquisition. In contrast, Igfbp2(-/-) mice have low bone mass accompanied by reduced osteoblast numbers, low bone formation rates, and increased PTEN expression. In the current study, we postulated that IGFBP-2 increased bone mass partly through the activity of its heparin-binding domain (HBD). We synthesized a HBD peptide specific for IGFBP-2 and demonstrated in vitro that it rescued the mineralization phenotype of Igfbp2(-/-) bone marrow stromal cells and calvarial osteoblasts. Consistent with its cellular actions, the HBD peptide ex vivo stimulated metacarpal periosteal expansion. Furthermore, administration of HBD peptide to Igfbp2(-/-) mice increased osteoblast number, suppressed marrow adipogenesis, restored trabecular bone mass, and reduced bone resorption. Skeletal rescue in the Igfbp2(-/-) mice was characterized by reduced PTEN expression followed by enhanced Akt phosphorylation in response to IGF-I and increased ß-catenin signaling through two mechanisms: 1) stimulation of its cytosolic accumulation and 2) increased phosphorylation of serine 552. We conclude that the HBD peptide of IGFBP-2 has anabolic activity by activating IGF-I/Akt and ß-catenin signaling pathways. These data support a growing body of evidence that IGFBP-2 is not just a transport protein but rather that it functions coordinately with IGF-I to stimulate growth and skeletal acquisition.


Assuntos
Heparina/química , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Células 3T3 , Animais , Células da Medula Óssea/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
14.
Elife ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125123

RESUMO

Pharmacological and genetic studies over the past decade have established the follicle-stimulating hormone (FSH) as an actionable target for diseases affecting millions, namely osteoporosis, obesity, and Alzheimer's disease. Blocking FSH action prevents bone loss, fat gain, and neurodegeneration in mice. We recently developed a first-in-class, humanized, epitope-specific FSH-blocking antibody, MS-Hu6, with a KD of 7.52 nM. Using a Good Laboratory Practice (GLP)-compliant platform, we now report the efficacy of MS-Hu6 in preventing and treating osteoporosis in mice and parameters of acute safety in monkeys. Biodistribution studies using 89Zr-labeled, biotinylated or unconjugated MS-Hu6 in mice and monkeys showed localization to bone and bone marrow. The MS-Hu6 displayed a ß phase t½ of 7.5 days (180 hr) in humanized Tg32 mice. We tested 217 variations of excipients using the protein thermal shift assay to generate a final formulation that rendered MS-Hu6 stable in solution upon freeze-thaw and at different temperatures, with minimal aggregation, and without self-, cross-, or hydrophobic interactions or appreciable binding to relevant human antigens. The MS-Hu6 showed the same level of "humanness" as human IgG1 in silico and was non-immunogenic in ELISpot assays for IL-2 and IFN-γ in human peripheral blood mononuclear cell cultures. We conclude that MS-Hu6 is efficacious, durable, and manufacturable, and is therefore poised for future human testing.


Assuntos
Hormônio Foliculoestimulante , Osteoporose , Animais , Epitopos/metabolismo , Excipientes , Hormônio Foliculoestimulante/metabolismo , Humanos , Imunoglobulina G/metabolismo , Interleucina-2/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Osteoporose/tratamento farmacológico , Distribuição Tecidual
15.
Cancer Res ; 81(3): 634-647, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33218968

RESUMO

Bone marrow adipocytes (BMAd) have recently been implicated in accelerating bone metastatic cancers, such as acute myelogenous leukemia and breast cancer. Importantly, bone marrow adipose tissue (BMAT) expands with aging and obesity, two key risk factors in multiple myeloma disease prevalence, suggesting that BMAds may influence and be influenced by myeloma cells in the marrow. Here, we provide evidence that reciprocal interactions and cross-regulation of myeloma cells and BMAds play a role in multiple myeloma pathogenesis and treatment response. Bone marrow biopsies from patients with multiple myeloma revealed significant loss of BMAT with myeloma cell infiltration of the marrow, whereas BMAT was restored after treatment for multiple myeloma. Myeloma cells reduced BMAT in different preclinical murine models of multiple myeloma and in vitro using myeloma cell-adipocyte cocultures. In addition, multiple myeloma cells altered adipocyte gene expression and cytokine secretory profiles, which were also associated with bioenergetic changes and induction of a senescent-like phenotype. In vivo, senescence markers were also increased in the bone marrow of tumor-burdened mice. BMAds, in turn, provided resistance to dexamethasone-induced cell-cycle arrest and apoptosis, illuminating a new possible driver of myeloma cell evolution in a drug-resistant clone. Our findings reveal that bidirectional interactions between BMAds and myeloma cells have significant implications for the pathogenesis and treatment of multiple myeloma. Targeting senescence in the BMAd or other bone marrow cells may represent a novel therapeutic approach for treatment of multiple myeloma. SIGNIFICANCE: This study changes the foundational understanding of how cancer cells hijack the bone marrow microenvironment and demonstrates that tumor cells induce senescence and metabolic changes in adipocytes, potentially driving new therapeutic directions.


Assuntos
Adipócitos/patologia , Tecido Adiposo/patologia , Células da Medula Óssea/patologia , Senescência Celular , Mieloma Múltiplo/patologia , Células 3T3 , Adipócitos/metabolismo , Adipócitos/fisiologia , Envelhecimento/patologia , Animais , Antineoplásicos Hormonais/farmacologia , Apoptose/efeitos dos fármacos , Biópsia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Comunicação Celular/fisiologia , Ciclo Celular/efeitos dos fármacos , Técnicas de Cocultura , Estudos de Coortes , Citocinas/metabolismo , Dexametasona/farmacologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/etiologia , Obesidade/patologia , Fenótipo
16.
JBMR Plus ; 4(11): e10413, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33210065

RESUMO

In endochondral ossification, chondroblasts become embedded in their matrix and become chondrocytes, which are mature cells that continue to proliferate, eventually becoming hypertrophic. Hypertrophic chondrocytes produce cartilage that is then resorbed by osteoclasts prior to bone matrix replacement via osteoblasts. Although sexually dimorphic bone phenotypes have long been characterized, specific modulation of the growth plate during a critical window in sexual maturation has not been evaluated. Here we report that specific depletion of osteocalcin- (OCN-) expressing cells in vivo during sexual maturation leads to dimorphic bone phenotypes in males and females. At 6 to 8 weeks of age, OCN-Cre;iDTR (inducible diphtheria toxin receptor-expressing) mice were treated with diphtheria toxin (DT) for 2 weeks to deplete OCN+ cells. At the end of the study, long bones were collected for µCT and histomorphometry, and serum was collected for proteomic and lipidomic analyses. Ablation of OCN+ cells in mice leads to consistent trends for weight loss after 2 weeks of treatment. Females exhibited decreased skeletal parameters in response to OCN+ cell ablation treatment, as expected. However, OCN+ cell ablation in males uniquely displayed an expansion of hypertrophic chondrocytes, a widening of the growth plate, and an abnormal "clubbing" anatomy of the distal femur. Following DT treatment, mice from both sexes also underwent metabolic cage analysis, in which both sexes exhibited decreased energy expenditure. We conclude that skewing endochondral bone formation during longitudinal growth has a profound effect on body weight and energy expenditure with sex-specific effects on developing bone. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

17.
Endocrinology ; 161(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32168373

RESUMO

Insulin-like growth factor binding protein-2 (IGFBP-2) stimulates osteoblast differentiation but only male Igfbp2 null mice have a skeletal phenotype. The trophic actions of IGFBP-2 in bone are mediated through its binding to receptor tyrosine phosphatase beta (RPTPß). Another important ligand for RPTPß is pleiotrophin (PTN), which also stimulates osteoblast differentiation. We determined the change in PTN and RPTPß in Igfbp2-/- mice. Analysis of whole bone mRNA in wild-type and knockout mice revealed increased expression of Ptn. Rptpß increased in gene-deleted animals with females having greater expression than males. Knockdown of PTN expression in osteoblasts in vitro inhibited differentiation, and addition of PTN to the incubation medium rescued the response. Estradiol stimulated PTN secretion and PTN knockdown blocked estradiol-stimulated differentiation. PTN addition to IGFBP-2 silenced osteoblast stimulated differentiation, and an anti-fibronectin-3 antibody, which inhibits PTN binding to RPTPß, inhibited this response. Estrogen stimulated PTN secretion and downstream signaling in the IGFBP-2 silenced osteoblasts and these effects were inhibited with anti-fibronectin-3. Administration of estrogen to wild-type and Igfbp2-/- male mice stimulated an increase in both areal bone mineral density and trabecular bone volume fraction but the increase was significantly greater in the Igfbp2-/- animals. Estrogen also stimulated RPTPß expression in the null mice. We conclude that loss of IGFBP-2 expression is accompanied by upregulation of PTN and RPTPß expression in osteoblasts, that the degree of increase is greater in females due to estrogen secretion, and that this compensatory change may account for some component of the maintenance of normal bone mass in female mice.


Assuntos
Densidade Óssea/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Estradiol/farmacologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Osteoblastos/efeitos dos fármacos , Animais , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/metabolismo , Feminino , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fatores Sexuais
18.
Cell Rep ; 33(1): 108223, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027655

RESUMO

Overweight and obesity are associated with type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and cancer, but all fat is not equal, as storing excess lipid in subcutaneous white adipose tissue (SWAT) is more metabolically favorable than in visceral fat. Here, we uncover a critical role for mTORC2 in setting SWAT lipid handling capacity. We find that subcutaneous white preadipocytes differentiating without the essential mTORC2 subunit Rictor upregulate mature adipocyte markers but develop a striking lipid storage defect resulting in smaller adipocytes, reduced tissue size, lipid re-distribution to visceral and brown fat, and sex-distinct effects on systemic metabolic fitness. Mechanistically, mTORC2 promotes transcriptional upregulation of select lipid metabolism genes controlled by PPARγ and ChREBP, including genes that control lipid uptake, synthesis, and degradation pathways as well as Akt2, which encodes a major mTORC2 substrate and insulin effector. Further exploring this pathway may uncover new strategies to improve insulin sensitivity.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Obesidade/fisiopatologia , Gordura Subcutânea/fisiopatologia , Animais , Humanos , Camundongos
19.
Physiol Rep ; 7(7): e14034, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30972920

RESUMO

Overdevelopment of visceral adipose is positively correlated with the etiology of obesity-associated pathologies including cardiovascular disease and insulin resistance. However, identification of genetic, molecular, and physiological factors regulating adipose development and function in response to nutritional stress is incomplete. Fibroblast Growth Factor 1 (FGF1) is a cytokine expressed and released by both adipocytes and endothelial cells under hypoxia, thermal, and oxidative stress. Expression of Fibroblast Growth Factor 1 (FGF1) in adipose is required for normal depot development and remodeling. Loss of FGF1 leads to deleterious changes in adipose morphology, metabolism, and insulin resistance. Conversely, diabetic and obese mice injected with recombinant FGF1 display improvements in insulin sensitivity and a reduction in adiposity. We report in this novel, in vivo study that transgenic mice expressing an endothelial-specific FGF1 transgene (FGF1-Tek) are resistant to high-fat diet-induced abdominal adipose accretion and are more glucose-tolerant than wild-type control animals. Metabolic chamber analyses indicate that suppression of the development of visceral adiposity and insulin resistance was not associated with alterations in appetite or resting metabolic rate in the FGF1-Tek strain. Instead, FGF1-Tek mice display increased locomotor activity that likely promotes the utilization of dietary fatty acids before they can accumulate in adipose and liver. This study provides insight into the impact that genetic differences dictating the production of FGF1 has on the risk for developing obesity-related metabolic disease in response to nutritional stress.


Assuntos
Tecido Adiposo/metabolismo , Células Endoteliais/metabolismo , Fator 1 de Crescimento de Fibroblastos/genética , Locomoção/genética , Obesidade Abdominal/genética , Adipócitos/metabolismo , Adiposidade/efeitos dos fármacos , Adiposidade/genética , Animais , Glicemia/metabolismo , Dieta Hiperlipídica , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Insulina/sangue , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Obesidade Abdominal/metabolismo
20.
Genome Biol ; 20(1): 171, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31446895

RESUMO

BACKGROUND: CRISPR-Cas9 gene-editing technology has facilitated the generation of knockout mice, providing an alternative to cumbersome and time-consuming traditional embryonic stem cell-based methods. An earlier study reported up to 16% efficiency in generating conditional knockout (cKO or floxed) alleles by microinjection of 2 single guide RNAs (sgRNA) and 2 single-stranded oligonucleotides as donors (referred herein as "two-donor floxing" method). RESULTS: We re-evaluate the two-donor method from a consortium of 20 laboratories across the world. The dataset constitutes 56 genetic loci, 17,887 zygotes, and 1718 live-born mice, of which only 15 (0.87%) mice contain cKO alleles. We subject the dataset to statistical analyses and a machine learning algorithm, which reveals that none of the factors analyzed was predictive for the success of this method. We test some of the newer methods that use one-donor DNA on 18 loci for which the two-donor approach failed to produce cKO alleles. We find that the one-donor methods are 10- to 20-fold more efficient than the two-donor approach. CONCLUSION: We propose that the two-donor method lacks efficiency because it relies on two simultaneous recombination events in cis, an outcome that is dwarfed by pervasive accompanying undesired editing events. The methods that use one-donor DNA are fairly efficient as they rely on only one recombination event, and the probability of correct insertion of the donor cassette without unanticipated mutational events is much higher. Therefore, one-donor methods offer higher efficiencies for the routine generation of cKO animal models.


Assuntos
Alelos , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Animais , Blastocisto/metabolismo , Análise Fatorial , Feminino , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Knockout , Microinjeções , Análise de Regressão , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA