Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 488(7409): 82-5, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859205

RESUMO

After terrestrialization, the diversification of arthropods and vertebrates is thought to have occurred in two distinct phases, the first between the Silurian and the Frasnian stages (Late Devonian period) (425-385 million years (Myr) ago), and the second characterized by the emergence of numerous new major taxa, during the Late Carboniferous period (after 345 Myr ago). These two diversification periods bracket the depauperate vertebrate Romer's gap (360-345 Myr ago) and arthropod gap (385-325 Myr ago), which could be due to preservational artefact. Although a recent molecular dating has given an age of 390 Myr for the Holometabola, the record of hexapods during the Early-Middle Devonian (411.5-391 Myr ago, Pragian to Givetian stages) is exceptionally sparse and based on fragmentary remains, which hinders the timing of this diversification. Indeed, although Devonian Archaeognatha are problematic, the Pragian of Scotland has given some Collembola and the incomplete insect Rhyniognatha, with its diagnostic dicondylic, metapterygotan mandibles. The oldest, definitively winged insects are from the Serpukhovian stage (latest Early Carboniferous period). Here we report the first complete Late Devonian insect, which was probably a terrestrial species. Its 'orthopteroid' mandibles are of an omnivorous type, clearly not modified for a solely carnivorous diet. This discovery narrows the 45-Myr gap in the fossil record of Hexapoda, and demonstrates further a first Devonian phase of diversification for the Hexapoda, as in vertebrates, and suggests that the Pterygota diversified before and during Romer's gap.


Assuntos
Evolução Biológica , Fósseis , Insetos/anatomia & histologia , Animais , Bélgica , História Antiga , Insetos/classificação , Filogenia , Asas de Animais
2.
Naturwissenschaften ; 104(11-12): 98, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29101477

RESUMO

The taxonomic affinities of fossils from the Frasnian succession of Belgium previously described as phyllopod and phyllocarid crustacean shields are discussed. The rediscovery of the holotype of Ellipsocaris dewalquei, the type species of the genus Ellipsocaris Woodward in Dewalque, 1882, allows to end the discussion on the taxonomic assignation of the genus Ellipsocaris. It is removed from the phyllopod crustaceans as interpreted originally and considered here as an ammonoid anaptychus. Furthermore, it is considered to be a junior synonym of the genus Sidetes Giebel, 1847. Similarly, Van Straelen's (1933) lower to middle Frasnian record Spathiocaris chagrinensis Ruedemann, 1916, is also an ammonoid anaptychus. Although ammonoids can be relatively frequent in some Frasnian horizons of Belgium, anaptychi remain particularly scarce and the attribution to the present material to peculiar ammonoid species is not possible.


Assuntos
Cefalópodes/anatomia & histologia , Cefalópodes/classificação , Fósseis , Animais , Bélgica , Filogenia , Especificidade da Espécie
3.
R Soc Open Sci ; 7(10): 201037, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204464

RESUMO

Myriapods were, together with arachnids, the earliest animals to occupy terrestrial ecosystems, by at least the Silurian. The origin of myriapods and their land colonization have long remained puzzling until euthycarcinoids, an extinct group of aquatic arthropods considered amphibious, were shown to be stem-group myriapods, extending the lineage to the Cambrian and evidencing a marine-to-terrestrial transition. Although possible respiratory structures comparable to the air-breathing tracheal system of myriapods are visible in several euthycarcinoids, little is known about the mechanism by which they respired. Here, we describe a new euthycarcinoid from Upper Devonian alluvio-lagoonal deposits of Belgium. Synchrotron-based elemental X-ray analyses were used to extract all available information from the only known specimen. Sulfur X-ray fluorescence (XRF) mapping and spectroscopy unveil sulfate evaporation stains, spread over the entire slab, suggestive of a very shallow-water to the terrestrial environment prior to burial consistent with an amphibious lifestyle. Trace metal XRF mapping reveals a pair of ventral spherical cavities or chambers on the second post-abdominal segment that do not compare to any known feature in aquatic arthropods, but might well play a part in air-breathing. Our data provide additional support for amphibious lifestyle in euthycarcinoids and show that different respiratory strategies were used during the marine-to-terrestrial transition in the myriapod lineage.

4.
PLoS One ; 14(10): e0224248, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31648249

RESUMO

The geologic history of the Southeastern United States of America is missing nearly 350-million-years of rocks, sediments, and fossils. This gap defines the Fall Line nonconformity where Upper Ordovician consolidated rocks are directly overlain by Upper Cretaceous unconsolidated sediments of the Atlantic Coastal Plain Province. Here we begin to fill in the missing geologic record by reporting the discovery of fossils of lower-to-middle Paleozoic tabulate corals (Syringophyllidae) in angular, quartz-rich, ferruginous sandstones that crop out in the Carolina Sandhills Physiographic Province that forms the updip margin of the Atlantic Coastal Plain Province near the Fall Line. These fossils of extinct tabulate corals are the first evidence that Paleozoic (Upper Ordovician-Lower Silurian) sandstones crop out amidst the mostly Mesozoic-to-Cenozoic deposits of the Atlantic Coastal Plain Province of the United States of America. This discovery of Paleozoic fossils and strata in a region in which they were previously entirely unknown offers a more complete insight into the geologic history of the Southern Appalachian Mountains Region, Carolina Sandhills and updip margin of the Atlantic Coastal Plain Province and extends the previously identified range of Syringophyllidae in North America.


Assuntos
Antozoários/crescimento & desenvolvimento , Evolução Biológica , Fósseis , Sedimentos Geológicos/análise , Paleontologia , Animais , Sudeste dos Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA