Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2214): 20210116, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34802268

RESUMO

Percolation theory is essential for understanding disease transmission patterns on the temporal mobility networks. However, the traditional approach of the percolation process can be inefficient when analysing a large-scale, dynamic network for an extended period. Not only is it time-consuming but it is also hard to identify the connected components. Recent studies demonstrate that spatial containers restrict mobility behaviour, described by a hierarchical topology of mobility networks. Here, we leverage crowd-sourced, large-scale human mobility data to construct temporal hierarchical networks composed of over 175 000 block groups in the USA. Each daily network contains mobility between block groups within a Metropolitan Statistical Area (MSA), and long-distance travels across the MSAs. We examine percolation on both levels and demonstrate the changes of network metrics and the connected components under the influence of COVID-19. The research reveals the presence of functional subunits even with high thresholds of mobility. Finally, we locate a set of recurrent critical links that divide components resulting in the separation of core MSAs. Our findings provide novel insights into understanding the dynamical community structure of mobility networks during disruptions and could contribute to more effective infectious disease control at multiple scales. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.


Assuntos
COVID-19 , Criatividade , Humanos , SARS-CoV-2
2.
PLoS One ; 16(11): e0258868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752462

RESUMO

Human mobility is crucial to understand the transmission pattern of COVID-19 on spatially embedded geographic networks. This pattern seems unpredictable, and the propagation appears unstoppable, resulting in over 350,000 death tolls in the U.S. by the end of 2020. Here, we create the spatiotemporal inter-county mobility network using 10 TB (Terabytes) trajectory data of 30 million smart devices in the U.S. in the first six months of 2020. We investigate the bond percolation process by removing the weakly connected edges. As we increase the threshold, the mobility network nodes become less interconnected and thus experience surprisingly abrupt phase transitions. Despite the complex behaviors of the mobility network, we devised a novel approach to identify a small, manageable set of recurrent critical bridges, connecting the giant component and the second-largest component. These adaptive links, located across the United States, played a key role as valves connecting components in divisions and regions during the pandemic. Beyond, our numerical results unveil that network characteristics determine the critical thresholds and the bridge locations. The findings provide new insights into managing and controlling the connectivity of mobility networks during unprecedented disruptions. The work can also potentially offer practical future infectious diseases both globally and locally.


Assuntos
COVID-19/mortalidade , COVID-19/transmissão , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/transmissão , Simulação por Computador , Humanos , Transição de Fase , SARS-CoV-2/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA