RESUMO
INTRODUCTION: A variety of gene rearrangements and molecular alterations are key drivers in the pathobiology of acute leukemia and myeloid disorders; current classification systems increasingly incorporate these findings in diagnostic algorithms. Therefore, clinical laboratories require versatile tools, which can detect an increasing number and variety of molecular and cytogenetic alterations of clinical significance. METHODS: We validated an RNA-based next-generation sequencing (NGS) assay that enables the detection of: (i) numerous hybrid fusion transcripts (including rare/novel gene partners), (ii) aberrantly expressed EVI1 (MECOM) and IKZF1 (Del exons 4-7) transcripts, and (iii) hotspot variants in KIT, ABL1, NPM1 (relevant in the context of gene rearrangement status). RESULTS: For hybrid fusion transcripts, the assay showed 98-100% concordance for known positive and negative samples, with an analytical sensitivity (i.e., limit of detection) of approximately 0.8% cells. Samples with underlying EVI1 (MECOM) translocations demonstrated increased EVI1 (MECOM) expression. Aberrant IKZF1 (Del exons 4-7) transcripts detectable with the assay were also present on orthogonal reverse transcription PCR. Specific hotspot mutations in KIT, ABL1, and NPM1 detected with the assay showed 100% concordance with orthogonal testing. Lastly, several illustrative samples are included to highlight the assay's clinically relevant contributions to patient workup. CONCLUSION: Through its ability to simultaneously detect various gene rearrangements, aberrantly expressed transcripts, and hotspot mutations, this RNA-based NGS assay is a valuable tool for clinical laboratories to supplement other molecular and cytogenetic methods used in the diagnostic workup and in clinical research for patients with acute leukemia and myeloid disorders.
Assuntos
Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Rearranjo Gênico , Fatores de Transcrição/genética , Proteínas Nucleares/genética , RNA , NucleotídeosRESUMO
The endophytic bacterium isolated from Scirpus triqueter was proved to be an oil-degraded bacterium. A pot experiment was conducted to investigate the removal ratio of diesel under the combined effect of oil-degraded microorganism (Pseudomonas sp. J4AJ) and S. triqueter. The effect of diesel on plant growth parameters, soil enzymes and microbial community was assessed after 60 days. The results showed that the soils which were planted with S. triqueter and inoculated with J4AJ displayed the highest removal ratio (54.51 ± 0.15%) after 60-day experiment. However, the removal ratio of J4AJ-treated soils was 38.97 ± 0.55%. Diesel was toxic to S. triqueter, as evidenced by growth inhibition during the experimental period. However, the plant height and stem biomass in the soils inoculated with J4AJ significantly increased. The combined effect of S. triqueter and J4AJ improved the enzyme activities of the catalase and dehydrogenase in the contaminated soil. The diversity index in soils under the effect of S. triqueter combined with J4AJ was lower than that of the other soil samples. The principal analysis of phospholipid fatty acid signatures revealed that the combined effect of S. triqueter and J4AJ increased the differences of soil microbial community structure with the other treatments.