Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Electrophoresis ; 43(20): 1984-1992, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35581166

RESUMO

Inspired by nature, the research of functionalized nanoparticles and nanodevices has been in-depth developed in recent years. In this paper, we theoretically studied the interaction between functional polyelectrolyte brush layer-modified nanoparticles and a silica flat substrate. Based on the Poisson-Nernst-Planck equations, the mathematical model is established. The changes of the volume charge density and electric field energy density when the nanoparticle interacts with the silica flat substrate under multi-ions regulation were investigated. The results show that when there is a strong interaction between the silica flat substrate and nanoparticles, such as the distances between the nanoparticle and silica flat substrate, which are 2 or 5 nm, the isoelectric point shift under the influence of silica flat substrate and the total charge density in the brush layer is jointly controlled by the cations in the solution and the volume charge density of the brush layer. With the increase of the distances between the nanoparticle and silica flat substrate, the regulation of the volume charge density of the brush layer dominates. These results will provide guidance for the movement mechanism of functionalized nanoparticles in silica nanochannels.


Assuntos
Nanopartículas , Dióxido de Silício , Cátions , Polieletrólitos , Propriedades de Superfície
2.
Langmuir ; 36(50): 15220-15229, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33305573

RESUMO

Nanoparticle surface charge regulation technology plays an important role in ion rectification, drug delivery, and cell biology. The biomimetic polyelectrolyte can be combined with nanoparticles by nanomodification technology to form a layer of coating, which is called the brush layer of nanoparticles. In this study, based on the Poisson-Nernst-Planck (PNP) equation system, a theoretical model considering a bionic electrolyte brush layer with charge density regulated by a chemical reaction is constructed. The charge properties of brushed nanoparticles are studied by changing the sizes of nanoparticles, the pH value of the solution, background salt solution concentration, and brush layer thickness. The result shows that the charge density of brushed nanoparticles increases with the increase of particle size. The isoelectric point (IEP) of the equilibrium reaction against the brush layer is pH = 5.5. When the pH < 5.5, the charge density of the particle brush layers decreases with the increase of pH, and when the pH > 5.5, the charge density of the particle brush layer increases with the increase of pH. By comparing the charge density of different brush thicknesses, it is found that the larger the brush thickness, the smaller the charge density of the brush layer. This research provides theoretical support for the change of the through pore velocity when macromolecular organic compounds pass through nanopores.

3.
Micromachines (Basel) ; 11(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256021

RESUMO

Functionalized nanofluidics devices have recently emerged as a powerful platform for applications of energy conversion. Inspired by biological cells, we theoretically studied the effect of the interaction between the nanoparticle and the plate which formed the brush layer modified by functional zwitterionic polyelectrolyte (PE) on the bulk charge density of the nanoparticle brush layer, and the charge/discharge effect when the distance between the particle and the plate was changed. In this paper, The Poisson-Nernst-Planck equation system is used to build the theoretical model to study the interaction between the nanoparticle and the plate modified by the PE brush layer, considering brush layer charge regulation in the presence of multiple ionic species. The results show that the bulk charge density of the brush layer decreases with the decrease of the distance between the nanoparticle and the flat substrate when the interaction occurs between the nanoparticle and the plate. When the distance between the particle and the plate is about 2 nm, the charge density of the brush layer at the bottom of the particle is about 69% of that at the top, and the electric field energy density reaches the maximum value when the concentration of the background salt solution is 10 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA