Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Comput Aided Mol Des ; 36(1): 63-76, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35059940

RESUMO

We report the results of our participation in the SAMPL8 GDCC Blind Challenge for host-guest binding affinity predictions. Absolute binding affinity prediction is of central importance to the biophysics of molecular association and pharmaceutical discovery. The blinded SAMPL series have provided an important forum for assessing the reliability of binding free energy methods in an objective way. In this challenge, we employed two binding free energy methods, the newly developed alchemical transfer method (ATM) and the well-established potential of mean force (PMF) physical pathway method, using the same setup and force field model. The calculated binding free energies from the two methods are in excellent quantitative agreement. Importantly, the results from the two methods were also found to agree well with the experimental binding affinities released subsequently, with R values of 0.89 (ATM) and 0.83 (PMF). These results were ranked among the best of the SAMPL8 GDCC challenge and second only to those obtained with the more accurate AMOEBA force field. Interestingly, the two host molecules included in the challenge (TEMOA and TEETOA) displayed distinct binding mechanisms, with TEMOA undergoing a dehydration transition whereas guest binding to TEETOA resulted in the opening of the binding cavity that remains essentially dry during the process. The coupled reorganization and hydration equilibria observed in these systems is a useful prototype for the study of these phenomena often observed in the formation of protein-ligand complexes. Given that the two free energy methods employed here are based on entirely different thermodynamic pathways, the close agreement between the two and their general agreement with the experimental binding free energies are a testament to the high quality and precision achieved by theory and methods. The study provides further validation of the novel ATM binding free energy estimation protocol and paves the way to further extensions of the method to more complex systems.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Ligação Proteica , Proteínas/química , Reprodutibilidade dos Testes , Termodinâmica
2.
J Comput Aided Mol Des ; 36(3): 193-203, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35262811

RESUMO

We have identified novel HIV-1 capsid inhibitors targeting the PF74 binding site. Acting as the building block of the HIV-1 capsid core, the HIV-1 capsid protein plays an important role in the viral life cycle and is an attractive target for antiviral development. A structure-based virtual screening workflow for hit identification was employed, which includes docking 1.6 million commercially-available drug-like compounds from the ZINC database to the capsid dimer, followed by applying two absolute binding free energy (ABFE) filters on the 500 top-ranked molecules from docking. The first employs the Binding Energy Distribution Analysis Method (BEDAM) in implicit solvent. The top-ranked compounds are then refined using the Double Decoupling method in explicit solvent. Both docking and BEDAM refinement were carried out on the IBM World Community Grid as part of the FightAIDS@Home project. Using this virtual screening workflow, we identified 24 molecules with calculated binding free energies between - 6 and - 12 kcal/mol. We performed thermal shift assays on these molecules to examine their potential effects on the stability of HIV-1 capsid hexamer and found that two compounds, ZINC520357473 and ZINC4119064 increased the melting point of the latter by 14.8 °C and 33 °C, respectively. These results support the conclusion that the two ZINC compounds are primary hits targeting the capsid dimer interface. Our simulations also suggest that the two hit molecules may bind at the capsid dimer interface by occupying a new sub-pocket that has not been exploited by existing CA inhibitors. The possible causes for why other top-scored compounds suggested by ABFE filters failed to show measurable activity are discussed.


Assuntos
Fármacos Anti-HIV , HIV-1 , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Solventes , Fluxo de Trabalho
3.
Phys Chem Chem Phys ; 24(10): 6037-6052, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35212338

RESUMO

Understanding the physical forces underlying receptor-ligand binding requires robust methods for analyzing the binding thermodynamics. In end-point binding free energy methods the binding free energy is naturally decomposable into physically intuitive contributions such as the solvation free energy and configurational entropy that can provide insights. Here we present a new end-point method called EE-BQH (Effective Energy-Boltzmann-Quasiharmonic) which combines the Boltzmann-Quasiharmonic model for configurational entropy with different solvation free energy methods, such as the continuum solvent PBSA model and the integral equation-based 3D-RISM, to estimate the absolute binding free energy. We compare EE-BQH with other treatments of configurational entropy such as Quasiharmonic models in internal coordinates (QHIC) and in Cartesian coordinates (QHCC), and Normal Mode analysis (NMA), by testing them on the octa acids host-guest complexes from the SAMPL8 blind challenge. The accuracies in the calculated absolute binding free energies strongly depend on the configurational entropy and solvation free energy methods used. QHIC and BQH yield the best agreements with the established potential of mean force (PMF) estimates, with R2 of ∼0.7 and mean unsigned error of ∼1.7 kcal mol-1. These results from the end-point calculations are also in similar agreement with experiments. While 3D-RISM in combination with QHIC or BQH lead to reasonable correlations with the PMF results and experiments, the calculated absolute binding free energies are underestimated by ∼5 kcal mol-1. While the binding is accompanied by a significant reduction in the ligand translational/rotational entropy, the change in the torsional entropy in these host-guest systems is slightly positive. Compared with BQH, QHIC underestimates the reduction of configurational entropy because of the non-Gaussian probability distributions in the ligand rotation and a small number of torsions. The study highlights the crucial role of configurational entropy in determining binding and demonstrates the potential of using the new end-point method to provide insights in more complex protein-ligand systems.


Assuntos
Simulação de Dinâmica Molecular , Entropia , Ligantes , Ligação Proteica , Termodinâmica
4.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639142

RESUMO

G-quadruplexes are four-stranded nucleic acid secondary structures of biological significance and have emerged as an attractive drug target. The G4 formed in the MYC promoter (MycG4) is one of the most studied small-molecule targets, and a model system for parallel structures that are prevalent in promoter DNA G4s and RNA G4s. Molecular docking has become an essential tool in structure-based drug discovery for protein targets, and is also increasingly applied to G4 DNA. However, DNA, and in particular G4, binding sites differ significantly from protein targets. Here we perform the first systematic evaluation of four commonly used docking programs (AutoDock Vina, DOCK 6, Glide, and RxDock) for G4 DNA-ligand binding pose prediction using four small molecules whose complex structures with the MycG4 have been experimentally determined in solution. The results indicate that there are considerable differences in the performance of the docking programs and that DOCK 6 with GB/SA rescoring performs better than the other programs. We found that docking accuracy is mainly limited by the scoring functions. The study shows that current docking programs should be used with caution to predict G4 DNA-small molecule binding modes.


Assuntos
DNA/metabolismo , Quadruplex G , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Software , Sítios de Ligação , DNA/química , DNA/genética , Humanos , Ligantes , Proteínas Proto-Oncogênicas c-myc/genética
5.
Biophys J ; 119(6): 1226-1238, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32877664

RESUMO

We report the free-energy landscape and thermodynamics of the protein-protein association responsible for the drug-induced multimerization of HIV-1 integrase (IN). Allosteric HIV-1 integrase inhibitors promote aberrant IN multimerization by bridging IN-IN intermolecular interactions. However, the thermodynamic driving forces and kinetics of the multimerization remain largely unknown. Here, we explore the early steps in the IN multimerization by using umbrella sampling and unbiased molecular dynamics simulations in explicit solvent. In direct simulations, the two initially separated dimers spontaneously associate to form near-native complexes that resemble the crystal structure of the aberrant tetramer. Most strikingly, the effective interaction of the protein-protein association is very short-ranged: the two dimers associate rapidly within tens of nanoseconds when their binding surfaces are separated by d ≤ 4.3 Å (less than two water diameters). Beyond this distance, the oligomerization kinetics appears to be diffusion controlled with a much longer association time. The free-energy profile also captured the crucial role of allosteric IN inhibitors in promoting multimerization and explained why several C-terminal domain mutations are remarkably resistant to the drug-induced multimerization. The results also show that at small separation, the protein-protein binding process contains two consecutive phases with distinct thermodynamic signatures. First, interprotein water molecules are expelled to the bulk, resulting in a small increase in entropy, as the solvent entropy gain from the water release is nearly cancelled by the loss of side-chain entropies as the two proteins approach each other. At shorter distances, the two dry binding surfaces adapt to each other to optimize their interaction energy at the expense of further protein configurational entropy loss. Although the binding interfaces feature clusters of hydrophobic residues, overall, the protein-protein association in this system is driven by enthalpy and opposed by entropy.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Entropia , Ligação Proteica , Termodinâmica
6.
J Comput Chem ; 41(1): 56-68, 2020 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-31621932

RESUMO

We propose a free energy calculation method for receptor-ligand binding, which have multiple binding poses that avoids exhaustive enumeration of the poses. For systems with multiple binding poses, the standard procedure is to enumerate orientations of the binding poses, restrain the ligand to each orientation, and then, calculate the binding free energies for each binding pose. In this study, we modify a part of the thermodynamic cycle in order to sample a broader conformational space of the ligand in the binding site. This modification leads to more accurate free energy calculation without performing separate free energy simulations for each binding pose. We applied our modification to simple model host-guest systems as a test, which have only two binding poses, by using a single decoupling method (SDM) in implicit solvent. The results showed that the binding free energies obtained from our method without knowing the two binding poses were in good agreement with the benchmark results obtained by explicit enumeration of the binding poses. Our method is applicable to other alchemical binding free energy calculation methods such as the double decoupling method (DDM) in explicit solvent. We performed a calculation for a protein-ligand system with explicit solvent using our modified thermodynamic path. The results of the free energy simulation along our modified path were in good agreement with the results of conventional DDM, which requires a separate binding free energy calculation for each of the binding poses of the example of phenol binding to T4 lysozyme in explicit solvent. © 2019 Wiley Periodicals, Inc.


Assuntos
Simulação de Dinâmica Molecular , Muramidase/química , Fenóis/química , Termodinâmica , Sítios de Ligação , Ligantes , Muramidase/metabolismo
7.
J Am Chem Soc ; 141(28): 11059-11070, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31283877

RESUMO

MYC is one of the most important oncogenes and is overexpressed in the majority of cancers. G-Quadruplexes are noncanonical four-stranded DNA secondary structures that have emerged as attractive cancer-specific molecular targets for drug development. The G-quadruplex formed in the proximal promoter region of the MYC oncogene (MycG4) has been shown to be a transcriptional silencer that is amenable to small-molecule targeting for MYC suppression. Indenoisoquinolines are human topoisomerase I inhibitors in clinical testing with improved physicochemical and biological properties as compared to the clinically used camptothecin anticancer drugs topotecan and irinotecan. However, some indenoisoquinolines with potent anticancer activity do not exhibit strong topoisomerase I inhibition, suggesting a separate mechanism of action. Here, we report that anticancer indenoisoquinolines strongly bind and stabilize MycG4 and lower MYC expression levels in cancer cells, using various biochemical, biophysical, computer modeling, and cell-based methods. Significantly, a large number of active indenoisoquinolines cause strong MYC downregulation in cancer cells. Structure-activity relationships of MycG4 recognition by indenoisoquinolines are investigated. In addition, the analysis of indenoisoquinoline analogues for their MYC-inhibitory activity, topoisomerase I-inhibitory activity, and anticancer activity reveals a synergistic effect of MYC inhibition and topoisomerase I inhibition on anticancer activity. Therefore, this study uncovers a novel mechanism of action of indenoisoquinolines as a new family of drugs targeting the MYC promoter G-quadruplex for MYC suppression. Furthermore, the study suggests that dual targeting of MYC and topoisomerase I may serve as a novel strategy for anticancer drug development.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Regulação para Baixo/efeitos dos fármacos , Indenos/farmacologia , Isoquinolinas/farmacologia , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Inibidores da Topoisomerase I/farmacologia , Sítios de Ligação/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Humanos , Indenos/química , Isoquinolinas/química , Estrutura Molecular , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/química
8.
Molecules ; 24(8)2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31010072

RESUMO

The human telomeric G-quadruplex (G4) is an attractive target for developing anticancer drugs. Natural products protoberberine alkaloids are known to bind human telomeric G4 and inhibit telomerase. Among several structurally similar protoberberine alkaloids, epiberberine (EPI) shows the greatest specificity in recognizing the human telomeric G4 over duplex DNA and other G4s. Recently, NMR study revealed that EPI recognizes specifically the hybrid-2 form human telomeric G4 by inducing large rearrangements in the 5'-flanking segment and loop regions to form a highly extensive four-layered binding pocket. Using the NMR structure of the EPI-human telomeric G4 complex, here we perform molecular dynamics free energy calculations to elucidate the ligand selectivity in the recognition of protoberberines by the human telomeric G4. The MM-PB(GB)SA (molecular mechanics-Poisson Boltzmann/Generalized Born) Surface Area) binding free energies calculated using the Amber force fields bsc0 and OL15 correlate well with the NMR titration and binding affinity measurements, with both calculations correctly identifying the EPI as the strongest binder to the hybrid-2 telomeric G4 wtTel26. The results demonstrated that accounting for the conformational flexibility of the DNA-ligand complexes is crucially important for explaining the ligand selectivity of the human telomeric G4. While the MD-simulated (molecular dynamics) structures of the G-quadruplex-alkaloid complexes help rationalize why the EPI-G4 interactions are optimal compared with the other protoberberines, structural deviations from the NMR structure near the binding site are observed in the MD simulations. We have also performed binding free energy calculation using the more rigorous double decoupling method (DDM); however, the results correlate less well with the experimental trend, likely due to the difficulty of adequately sampling the very large conformational reorganization in the G4 induced by the protoberberine binding.


Assuntos
Alcaloides de Berberina/química , Quadruplex G/efeitos dos fármacos , Telômero/química , Sítios de Ligação , Fluorescência , Humanos , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Termodinâmica
9.
Phys Chem Chem Phys ; 20(25): 17081-17092, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29896599

RESUMO

Accurately predicting absolute binding free energies of protein-ligand complexes is important as a fundamental problem in both computational biophysics and pharmaceutical discovery. Calculating binding free energies for charged ligands is generally considered to be challenging because of the strong electrostatic interactions between the ligand and its environment in aqueous solution. In this work, we compare the performance of the potential of mean force (PMF) method and the double decoupling method (DDM) for computing absolute binding free energies for charged ligands. We first clarify an unresolved issue concerning the explicit use of the binding site volume to define the complexed state in DDM together with the use of harmonic restraints. We also provide an alternative derivation for the formula for absolute binding free energy using the PMF approach. We use these formulas to compute the binding free energy of charged ligands at an allosteric site of HIV-1 integrase, which has emerged in recent years as a promising target for developing antiviral therapy. As compared with the experimental results, the absolute binding free energies obtained by using the PMF approach show unsigned errors of 1.5-3.4 kcal mol-1, which are somewhat better than the results from DDM (unsigned errors of 1.6-4.3 kcal mol-1) using the same amount of CPU time. According to the DDM decomposition of the binding free energy, the ligand binding appears to be dominated by nonpolar interactions despite the presence of very large and favorable intermolecular ligand-receptor electrostatic interactions, which are almost completely cancelled out by the equally large free energy cost of desolvation of the charged moiety of the ligands in solution. We discuss the relative strengths of computing absolute binding free energies using the alchemical and physical pathway methods.

10.
J Biol Chem ; 291(45): 23569-23577, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27645997

RESUMO

HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC50 of 72 µm and impaired HIV-1 infection of T cells at an EC50 of 36 µm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs.


Assuntos
Infecções por HIV/tratamento farmacológico , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Tiofenos/química , Tiofenos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Descoberta de Drogas , Células HEK293 , Infecções por HIV/virologia , Integrase de HIV/química , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular
11.
J Comput Chem ; 38(15): 1198-1208, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28008630

RESUMO

Many biomolecules undergo conformational changes associated with allostery or ligand binding. Observing these changes in computer simulations is difficult if their timescales are long. These calculations can be accelerated by observing the transition on an auxiliary free energy surface with a simpler Hamiltonian and connecting this free energy surface to the target free energy surface with free energy calculations. Here, we show that the free energy legs of the cycle can be replaced with energy representation (ER) density functional approximations. We compute: (1) The conformational free energy changes for alanine dipeptide transitioning from the right-handed free energy basin to the left-handed basin and (2) the free energy difference between the open and closed conformations of ß-cyclodextrin, a "host" molecule that serves as a model for molecular recognition in host-guest binding. ß-cyclodextrin contains 147 atoms compared to 22 atoms for alanine dipeptide, making ß-cyclodextrin a large molecule for which to compute solvation free energies by free energy perturbation or integration methods and the largest system for which the ER method has been compared to exact free energy methods. The ER method replaced the 28 simulations to compute each coupling free energy with two endpoint simulations, reducing the computational time for the alanine dipeptide calculation by about 70% and for the ß-cyclodextrin by > 95%. The method works even when the distribution of conformations on the auxiliary free energy surface differs substantially from that on the target free energy surface, although some degree of overlap between the two surfaces is required. © 2016 Wiley Periodicals, Inc.


Assuntos
Dipeptídeos/química , Termodinâmica , Água/química , beta-Ciclodextrinas/química , Conformação Molecular , Simulação de Dinâmica Molecular , Solventes/química
12.
J Mol Recognit ; 29(1): 10-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26256816

RESUMO

Force field accuracy is still one of the "stalemates" in biomolecular modeling. Model systems with high quality experimental data are valuable instruments for the validation and improvement of effective potentials. With respect to protein-ligand binding, organic host-guest complexes have long served as models for both experimental and computational studies because of the abundance of binding affinity data available for such systems. Binding affinity data collected for cyclodextrin (CD) inclusion complexes, a popular model for molecular recognition, is potentially a more reliable resource for tuning energy parameters than hydration free energy measurements. Convergence of binding free energy calculations on CD host-guest systems can also be obtained rapidly, thus offering the opportunity to assess the robustness of these parameters. In this work, we demonstrate how implicit solvent parameters can be developed using binding affinity experimental data and the binding energy distribution analysis method (BEDAM) and validated using the Grid Inhomogeneous Solvation Theory analysis. These new solvation parameters were used to study protein-ligand binding in two drug targets against the HIV-1 virus and improved the agreement between the calculated and the experimental binding affinities. This work illustrates how benchmark sets of high quality experimental binding affinity data and physics-based binding free energy models can be used to evaluate and optimize force fields for protein-ligand systems. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Integrase de HIV/metabolismo , Protease de HIV/metabolismo , beta-Ciclodextrinas/metabolismo , Integrase de HIV/química , Protease de HIV/química , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Termodinâmica , beta-Ciclodextrinas/química
13.
J Comput Aided Mol Des ; 30(9): 743-751, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27562018

RESUMO

We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.


Assuntos
Proteínas de Choque Térmico HSP90/química , Simulação de Acoplamento Molecular/métodos , Sítios de Ligação , Desenho de Fármacos , Humanos , Cinética , Ligantes , Estudos Prospectivos , Ligação Proteica , Conformação Proteica , Curva ROC , Termodinâmica
14.
Retrovirology ; 11: 100, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25421939

RESUMO

BACKGROUND: Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an important new class of anti-HIV-1 agents. ALLINIs bind at the IN catalytic core domain (CCD) dimer interface occupying the principal binding pocket of its cellular cofactor LEDGF/p75. Consequently, ALLINIs inhibit HIV-1 IN interaction with LEDGF/p75 as well as promote aberrant IN multimerization. Selection of viral strains emerging under the inhibitor pressure has revealed mutations at the IN dimer interface near the inhibitor binding site. RESULTS: We have investigated the effects of one of the most prevalent substitutions, H171T IN, selected under increasing pressure of ALLINI BI-D. Virus containing the H171T IN substitution exhibited an ~68-fold resistance to BI-D treatment in infected cells. These results correlated with ~84-fold reduced affinity for BI-D binding to recombinant H171T IN CCD protein compared to its wild type (WT) counterpart. However, the H171T IN substitution only modestly affected IN-LEDGF/p75 binding and allowed HIV-1 containing this substitution to replicate at near WT levels. The x-ray crystal structures of BI-D binding to WT and H171T IN CCD dimers coupled with binding free energy calculations revealed the importance of the Nδ- protonated imidazole group of His171 for hydrogen bonding to the BI-D tert-butoxy ether oxygen and establishing electrostatic interactions with the inhibitor carboxylic acid, whereas these interactions were compromised upon substitution to Thr171. CONCLUSIONS: Our findings reveal a distinct mechanism of resistance for the H171T IN mutation to ALLINI BI-D and indicate a previously undescribed role of the His171 side chain for binding the inhibitor.


Assuntos
Acetatos/metabolismo , Farmacorresistência Viral , Inibidores de Integrase de HIV/metabolismo , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Mutação de Sentido Incorreto , Quinolinas/metabolismo , Linhagem Celular , Cristalografia por Raios X , Integrase de HIV/química , Integrase de HIV/genética , Histidina/genética , Histidina/metabolismo , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica
15.
J Comput Aided Mol Des ; 28(4): 327-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24595873

RESUMO

Here, we give an overview of the protein-ligand binding portion of the Statistical Assessment of Modeling of Proteins and Ligands 4 (SAMPL4) challenge, which focused on predicting binding of HIV integrase inhibitors in the catalytic core domain. The challenge encompassed three components--a small "virtual screening" challenge, a binding mode prediction component, and a small affinity prediction component. Here, we give summary results and statistics concerning the performance of all submissions at each of these challenges. Virtual screening was particularly challenging here in part because, in contrast to more typical virtual screening test sets, the inactive compounds were tested because they were thought to be likely binders, so only the very top predictions performed significantly better than random. Pose prediction was also quite challenging, in part because inhibitors in the set bind to three different sites, so even identifying the correct binding site was challenging. Still, the best methods managed low root mean squared deviation predictions in many cases. Here, we give an overview of results, highlight some features of methods which worked particularly well, and refer the interested reader to papers in this issue which describe specific submissions for additional details.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV/enzimologia , Domínio Catalítico , Simulação por Computador , Desenho Assistido por Computador , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Infecções por HIV/virologia , Integrase de HIV/química , Inibidores de Integrase de HIV/química , Humanos , Modelos Moleculares , Modelos Estatísticos , Ligação Proteica
16.
J Comput Aided Mol Des ; 28(4): 475-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24504704

RESUMO

As part of the SAMPL4 blind challenge, filtered AutoDock Vina ligand docking predictions and large scale binding energy distribution analysis method binding free energy calculations have been applied to the virtual screening of a focused library of candidate binders to the LEDGF site of the HIV integrase protein. The computational protocol leveraged docking and high level atomistic models to improve enrichment. The enrichment factor of our blind predictions ranked best among all of the computational submissions, and second best overall. This work represents to our knowledge the first example of the application of an all-atom physics-based binding free energy model to large scale virtual screening. A total of 285 parallel Hamiltonian replica exchange molecular dynamics absolute protein-ligand binding free energy simulations were conducted starting from docked poses. The setup of the simulations was fully automated, calculations were distributed on multiple computing resources and were completed in a 6-weeks period. The accuracy of the docked poses and the inclusion of intramolecular strain and entropic losses in the binding free energy estimates were the major factors behind the success of the method. Lack of sufficient time and computing resources to investigate additional protonation states of the ligands was a major cause of mispredictions. The experiment demonstrated the applicability of binding free energy modeling to improve hit rates in challenging virtual screening of focused ligand libraries during lead optimization.


Assuntos
Integrase de HIV/metabolismo , HIV/enzimologia , Inibidores de Integrase/química , Inibidores de Integrase/farmacologia , Simulação de Acoplamento Molecular , Termodinâmica , Desenho Assistido por Computador , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Infecções por HIV/virologia , Integrase de HIV/química , Humanos , Ligantes , Ligação Proteica , Software
17.
Viruses ; 16(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38257776

RESUMO

The first- and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffolds, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding with intasomes from HIV-1 and the closely related prototype foamy virus (PFV) despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we applied a novel molecular dynamics-based free energy method that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between the two bound conformations of ligand 4f within the crowded environments of the INSTI binding pockets in these intasomes. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode, and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.


Assuntos
Integrase de HIV , Soropositividade para HIV , HIV-1 , Humanos , Ligantes , Sítios de Ligação , Catálise , Integrase de HIV/genética , HIV-1/genética
18.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077045

RESUMO

The first and second-generation clinically used HIV-1 integrase (IN) strand transfer inhibitors (INSTIs) are key components of antiretroviral therapy (ART), which work by blocking the integration step in the HIV-1 replication cycle that is catalyzed by a nucleoprotein assembly called an intasome. However, resistance to even the latest clinically used INSTIs is beginning to emerge. Developmental third-generation INSTIs, based on naphthyridine scaffold, are promising candidates to combat drug-resistant viral variants. Among these novel INSTIs, compound 4f exhibits two distinct conformations when binding to intasomes from HIV-1 and the closely related prototype foamy virus (PFV), despite the high structural similarity of their INSTI binding pockets. The molecular mechanism and the key active site residues responsible for these differing binding modes in closely related intasomes remain elusive. To unravel the molecular determinants governing the two distinct binding modes, we employ a novel molecular dynamics-based free energy approach that utilizes alchemical pathways to overcome the sampling challenges associated with transitioning between two ligand conformations within crowded environments along physical pathways. The calculated conformational free energies successfully recapitulate the experimentally observed binding mode preferences in the two viral intasomes. Analysis of the simulated structures suggests that the observed binding mode preferences are caused by amino acid residue differences in both the front and the central catalytic sub-pocket of the INSTI binding site in HIV-1 and PFV. Additional free energy calculations on mutants of HIV-1 and PFV revealed that while both sub-pockets contribute to the binding mode selection, the central sub-pocket plays a more important role. These results highlight the importance of both side chain and solvent reorganization, as well as the conformational entropy in determining the ligand binding mode and will help inform the development of more effective INSTIs for combatting drug-resistant viral variants.

19.
Sci Adv ; 9(29): eadg5953, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478179

RESUMO

HIV-1 infection depends on the integration of viral DNA into host chromatin. Integration is mediated by the viral enzyme integrase and is blocked by integrase strand transfer inhibitors (INSTIs), first-line antiretroviral therapeutics widely used in the clinic. Resistance to even the best INSTIs is a problem, and the mechanisms of resistance are poorly understood. Here, we analyze combinations of the mutations E138K, G140A/S, and Q148H/K/R, which confer resistance to INSTIs. The investigational drug 4d more effectively inhibited the mutants compared with the approved drug Dolutegravir (DTG). We present 11 new cryo-EM structures of drug-resistant HIV-1 intasomes bound to DTG or 4d, with better than 3-Å resolution. These structures, complemented with free energy simulations, virology, and enzymology, explain the mechanisms of DTG resistance involving E138K + G140A/S + Q148H/K/R and show why 4d maintains potency better than DTG. These data establish a foundation for further development of INSTIs that potently inhibit resistant forms in integrase.


Assuntos
Inibidores de Integrase de HIV , Integrase de HIV , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/química , Oxazinas/farmacologia , Mutação , Integrase de HIV/genética , Integrase de HIV/química , Integrase de HIV/metabolismo
20.
J Am Chem Soc ; 133(24): 9387-94, 2011 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-21561098

RESUMO

The conformational dynamics in the flaps of HIV-1 protease plays a crucial role in the mechanism of substrate binding. We develop a kinetic network model, constructed from detailed atomistic simulations, to determine the kinetic mechanisms of the conformational transitions in HIV-1 PR. To overcome the time scale limitation of conventional molecular dynamics (MD) simulations, our method combines replica exchange MD with transition path theory (TPT) to study the diversity and temperature dependence of the pathways connecting functionally important states of the protease. At low temperatures the large-scale flap opening is dominated by a small number of paths; at elevated temperatures the transition occurs through many structurally heterogeneous routes. The expanded conformation in the crystal structure 1TW7 is found to closely mimic a key intermediate in the flap-opening pathways at low temperature. We investigated the different transition mechanisms between the semi-open and closed forms. The calculated relaxation times reveal fast semi-open ↔ closed transitions, and infrequently the flaps fully open. The ligand binding rate predicted from this kinetic model increases by 38-fold from 285 to 309 K, which is in general agreement with experiments. To our knowledge, this is the first application of a network model constructed from atomistic simulations together with TPT to analyze conformational changes between different functional states of a natively folded protein.


Assuntos
Protease de HIV/química , Protease de HIV/metabolismo , HIV-1/enzimologia , Simulação de Dinâmica Molecular , Cinética , Ligantes , Conformação Proteica , Processos Estocásticos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA