Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioact Mater ; 27: 409-428, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37152712

RESUMO

Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs). As components, SS31, a mitochondria-targeted peptide, maintains mitochondrial function, reduces mitochondrial reactive oxygen species (ROS) and thus regulates macrophage polarization, as well as promoting cell proliferation and migration, while MPDA NPs not only scavenge ROS and exert an anti-bacterial effect by photothermal treatment under near-infrared light irradiation, but also control release of SS31 in response to ROS. This F127DA/HAMA-MPDA@SS31 (FH-M@S) hydrogel has characteristics of adhesion, superior biocompatibility and mechanical properties which can adapt to irregular wounds at different body sites and provide sustained release of MPDA@SS31 (M@S) NPs. In addition, in a diabetic rat full thickness skin defect model, the FH-M@S hydrogel promoted macrophage M2 polarization, collagen deposition, neovascularization and wound healing. Therefore, the FH-M@S hydrogel exhibits promising therapeutic potential for skin regeneration.

2.
J Nanosci Nanotechnol ; 20(12): 7743-7747, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32711652

RESUMO

A thin, clean pristine Au film created in a transmission electron microscope chamber was tailored by an electron beam. Various kinds of nanopatterns, including hexagonal holes and dumbbell-like patterns, were fabricated by different doses of the electron beam. A high-quality series of in situ images were recorded to explore the irradiation mechanism. The electron-matter collision enabled the electron beam to act as a tweezer to arrange atoms into a specified pattern.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA