Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Chem ; 139: 106688, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423053

RESUMO

A flexible asymmetric synthesis of both enantiomers of euphopilolide (1) and jolkinolide E (2) [(+)-and (-)-1, (+)-and (-)-2] has been accomplished. This synthesis features an intramolecular oxa-Pauson-Khand reaction (o-PKR) to expeditiously construct the challenging tetracyclic [6.6.6.5] abietane-type diterpene framework, elegantly showcasing the complexity-generating features of o-PKR synthetic methodology leveraging on a judiciously chosen suitable chiral pool scaffold. Furthermore, the anti-hepatocellular carcinoma (HCC) activity of synthetic (-)-euphopilolide (1), (-)-jolkinolide E (2) and their analogues was evaluated. We found that (-)-euphopilolide (1) and (-)-jolkinolide E (2) inhibited the proliferation and induced apoptosis in HCC cells. These findings lay a good foundation for further pharmacology studies of abietane lactone derivatives and provide valuable insight for the development of anti-HCC small molecule drug of natural product origin.

2.
Arch Toxicol ; 97(6): 1627-1647, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120773

RESUMO

Hepatocellular carcinoma (HCC) is a type of cancer characterized by high recurrence rates. Overcoming chemoresistance can reduce HCC recurrence and improve patients' prognosis. This work aimed to identify HCC chemoresistance-associated long non-coding RNA (lncRNA) and find an effective drug targeting the identified lncRNA for ameliorating the chemoresistance. In this investigation, bioinformatics analysis based on The Cancer Genome Atlas revealed a new chemoresistance index and suggested LINC02331 as an HCC chemoresistance and patients' prognosis-associated lncRNA that served as an independent prognostic indicator. Moreover, LINC02331 promoted DNA damage repair, DNA replication, and epithelial-mesenchymal transition as well as attenuated cell cycle arrest and apoptosis through regulating Wnt/ß-catenin signaling, thus stimulating HCC resistance to cisplatin cytotoxicity, proliferation, and metastasis. Interestingly, we developed a novel oxidative coupling approach to synthesize a dimeric oxyberberine CT4-1, which exerted superior anti-HCC activities without obvious side effects measured by in vivo mice model and could downregulate LINC02331 mice model and could downregulate LINC02331 to mitigate LINC02331-induced HCC progression by suppressing Wnt/ß-catenin signaling. RNA sequencing analyses verified the involvement of CT4-1-affected differential expression genes in dysregulated pathways and processes, including Wnt, DNA damage repair, cell cycle, DNA replication, apoptosis, and cell adhesion molecules. Furthermore, CT4-1 was demonstrated to be an effective cytotoxic drug in ameliorating HCC patients' prognosis with a prediction model constructed based on RNA-sequencing data from CT4-1-treated cancer cells and public cancer database. In summary, HCC chemoresistance-associated LINC02331 independently predicted poor patients' prognosis and enhanced HCC progression by promoting resistance to cisplatin cytotoxicity, proliferation, and metastasis. Targeting LINC02331 by the dimeric oxyberberine CT4-1 that exhibited synergistic cytotoxicity with cisplatin could alleviate HCC progression and improve patients' prognosis. Our study identified LINC02331 as an alternative target and suggested CT4-1 as an effective cytotoxic drug in HCC treatment.


Assuntos
Antineoplásicos , Berberina , Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , beta Catenina/genética , beta Catenina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , Via de Sinalização Wnt , Berberina/análogos & derivados , Berberina/farmacologia
3.
Eur J Pharmacol ; 956: 175871, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406849

RESUMO

Rheumatoid arthritis (RA) is a kind of chronic autoimmune disease. The existing therapies encountered several challenges. Therefore, continued novel anti-RA drug discovery remains necessary for RA therapy. Recently, our group reported a novel compound named CT2-3, which could be realized as a hybrid of the natural product magnolol and phthalimide and exhibited anti-lung cancer activity. However, the effect of CT2-3 on RA is unclear. Here, we aim to explore the effect and potential mechanism of CT2-3 on the abnormal functions of RA-fibroblast-like synoviocytes (RA-FLSs). In this study, we identified the important role of the dysregulated cell cycle and apoptosis of RA-FLSs in RA progression. Interestingly, we found that CT2-3 inhibited the proliferation and DNA replication of primary RA-FLSs and immortalized RA-FLSs namely MH7A. In addition, CT2-3 downregulated the mRNA and protein expression of cyclin-dependent kinase 2 (CDK2), cyclin A2, and cyclin B1, resulting in cell cycle arrest of primary RA-FLSs and MH7A cells. Also, CT2-3 downregulated the level of B-cell lymphoma-2 (Bcl-2), and increased the level of Bcl-2 associated X (Bax), contributing to apoptosis of primary RA-FLSs and MH7A cells. Furthermore, differential analyses of RNA-sequencing, Western blot, and network pharmacological analysis confirmed that CT2-3 inhibited phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway of primary RA-FLSs and MH7A cells. In conclusion, CT2-3 induces cell cycle arrest and apoptosis in RA-FLSs through modulating PI3K/AKT pathway, which may serve as a potential lead compound for further novel small molecule anti-RA drug development.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Pontos de Checagem do Ciclo Celular , Células Cultivadas , Apoptose , Fibroblastos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Front Chem ; 11: 1280999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927560

RESUMO

Introduction: The rising incidence of type 2 diabetes has seriously affected international public health. The search for more drugs that can effectively treat diabetes has become a cutting-edge trend in research. Coenzyme Q10 (CoQ10) has attracted much attention in the last decade due to its wide range of biological activities. Many researchers have explored the clinical effects of CoQ10 in patients with type 2 diabetes. However, CoQ10 has low bio-availability due to its high lipophilicity. Therefore, we have structurally optimized CoQ10 in an attempt to exploit the potential of its pharmacological activity. Methods: A novel coenzyme Q10 derivative (L-50) was designed and synthesized by introducing a group containing bromine atom and hydroxyl at the terminal of coenzyme Q10 (CoQ10), and the antidiabetic effect of L-50 was investigated by cellular assays and animal experiments. Results: Cytotoxicity results showed that L-50 was comparatively low toxicity to HepG2 cells. Hypoglycemic assays indicated that L-50 could increase glucose uptake in IR-HepG2 cells, with significantly enhanced hypoglycemic capacity compared to the CoQ10. In addition, L-50 improved cellular utilization of glucose through reduction of reactive oxygen species (ROS) accumulated in insulin-resistant HepG2 cells (IR-HepG2) and regulation of JNK/AKT/GSK3ß signaling pathway, resulting in hypoglycemic effects. Furthermore, the animal experiments demonstrated that L-50 could restore the body weight of HFD/STZ mice. Notably, the findings suggested that L-50 could improve glycemic and lipid metabolism in HFD/STZ mice. Moreover, L-50 could increase fasting insulin levels (FINS) in HFD/STZ mice, leading to a decrease in fasting blood glucose (FBG) and hepatic glycogen. Furthermore, L-50 could recover triglycerides (TG), total cholesterol (T-CHO), lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels in HFD/STZ mice. Discussion: The addition of a bromine atom and a hydroxyl group to CoQ10 could enhance its anti-diabetic activity. It is anticipated that L-50 could be a promising new agent for T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA