Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 233: 116413, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343754

RESUMO

While the link between exposure to high levels of ambient particulate matter (PM) and increased incidences of respiratory and cardiovascular diseases is widely recognized, recent epidemiological studies have shown that low PM concentrations are equally associated with adverse health effects. As DNA methylation is one of the main mechanisms by which cells regulate and stabilize gene expression, changes in the methylome could constitute early indicators of dysregulated signaling pathways. So far, little is known about PM-associated DNA methylation changes in the upper airways, the first point of contact between airborne pollutants and the human body. Here, we focused on cells of the upper respiratory tract and assessed their genome-wide DNA methylation pattern to explore exposure-associated early regulatory changes. Using a mobile epidemiological laboratory, nasal lavage samples were collected from a cohort of 60 adults that lived in districts with records of low (Simmerath) or moderate (Stuttgart) PM10 levels in Germany. PM10 concentrations were verified by particle measurements on the days of the sample collection and genome-wide DNA methylation was determined by enzymatic methyl sequencing at single-base resolution. We identified 231 differentially methylated regions (DMRs) between moderately and lowly PM10 exposed individuals. A high proportion of DMRs overlapped with regulatory elements, and DMR target genes were involved in pathways regulating cellular redox homeostasis and immune response. In addition, we found distinct changes in DNA methylation of the HOXA gene cluster whose methylation levels have previously been linked to air pollution exposure but also to carcinogenesis in several instances. The findings of this study suggest that regulatory changes in upper airway cells occur at PM10 levels below current European thresholds, some of which may be involved in the development of air pollution-related diseases.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Metilação de DNA , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/toxicidade , Material Particulado/análise , Epigênese Genética
2.
Heredity (Edinb) ; 127(2): 190-202, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33966050

RESUMO

Failure to maintain DNA methylation patterns during plant development can occasionally give rise to so-called "spontaneous epimutations". These stochastic methylation changes are sometimes heritable across generations and thus accumulate in plant genomes over time. Recent evidence indicates that spontaneous epimutations have a major role in shaping patterns of methylation diversity in plant populations. Using single CG dinucleotides as units of analysis, previous work has shown that the epimutation rate is several orders of magnitude higher than the genetic mutation rate. While these large rate differences have obvious implications for understanding genome-methylome co-evolution, the functional relevance of single CG methylation changes remains questionable. In contrast to single CG, solid experimental evidence has linked methylation gains and losses in larger genomic regions with transcriptional variation and heritable phenotypic effects. Here we show that such region-level changes arise stochastically at about the same rate as those at individual CG sites, are only marginal dependent on region size and cytosine density, but strongly dependent on chromosomal location. We also find consistent evidence that region-level epimutations are not restricted to CG contexts but also frequently occur in non-CG regions at the genome-wide scale. Taken together, our results support the view that many differentially methylated regions (DMRs) in natural populations originate from epimutation events and may not be effectively tagged by proximal SNPs. This possibility reinforces the need for epigenome-wide association studies (EWAS) in plants as a way to identify the epigenetic basis of complex traits.


Assuntos
Arabidopsis , Arabidopsis/genética , Metilação de DNA , Epigênese Genética , Genoma de Planta , Taxa de Mutação
3.
Mol Brain ; 13(1): 148, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172478

RESUMO

Neuronal activity-regulated gene transcription underlies plasticity-dependent changes in the molecular composition and structure of neurons. A large number of genes regulated by different neuronal plasticity inducing pathways have been identified, but altered gene expression levels represent only part of the complexity of the activity-regulated transcriptional program. Alternative splicing, the differential inclusion and exclusion of exonic sequence in mRNA, is an additional mechanism that is thought to define the activity-dependent transcriptome. Here, we present a genome wide microarray-based survey to identify exons with increased expression levels at 1, 4 or 8 h following neuronal activity in the murine hippocampus provoked by generalized seizures. We used two different bioinformatics approaches to identify alternative activity-induced exon usage and to predict alternative splicing, ANOSVA (ANalysis Of Splicing VAriation) which we here adjusted to accommodate data from different time points and FIRMA (Finding Isoforms using Robust Multichip Analysis). RNA sequencing, in situ hybridization and reverse transcription PCR validate selected activity-dependent splicing events of previously described and so far undescribed activity-regulated transcripts, including Homer1a, Homer1d, Ania3, Errfi1, Inhba, Dclk1, Rcan1, Cda, Tpm1 and Krt75. Taken together, our survey significantly adds to the comprehensive understanding of the complex activity-dependent neuronal transcriptomic signature. In addition, we provide data sets that will serve as rich resources for future comparative expression analyses.


Assuntos
Processamento Alternativo/genética , Éxons/genética , Neurônios/metabolismo , Animais , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Reprodutibilidade dos Testes
4.
Genome Biol ; 21(1): 260, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023650

RESUMO

Stochastic changes in DNA methylation (i.e., spontaneous epimutations) contribute to methylome diversity in plants. Here, we describe AlphaBeta, a computational method for estimating the precise rate of such stochastic events using pedigree-based DNA methylation data as input. We demonstrate how AlphaBeta can be employed to study transgenerationally heritable epimutations in clonal or sexually derived mutation accumulation lines, as well as somatic epimutations in long-lived perennials. Application of our method to published and new data reveals that spontaneous epimutations accumulate neutrally at the genome-wide scale, originate mainly during somatic development and that they can be used as a molecular clock for age-dating trees.


Assuntos
Metilação de DNA , Epigenoma , Genoma de Planta , Genômica/métodos , Software , Arabidopsis , Populus , Taraxacum
5.
Genome Biol ; 21(1): 259, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023654

RESUMO

BACKGROUND: Plants can transmit somatic mutations and epimutations to offspring, which in turn can affect fitness. Knowledge of the rate at which these variations arise is necessary to understand how plant development contributes to local adaption in an ecoevolutionary context, particularly in long-lived perennials. RESULTS: Here, we generate a new high-quality reference genome from the oldest branch of a wild Populus trichocarpa tree with two dominant stems which have been evolving independently for 330 years. By sampling multiple, age-estimated branches of this tree, we use a multi-omics approach to quantify age-related somatic changes at the genetic, epigenetic, and transcriptional level. We show that the per-year somatic mutation and epimutation rates are lower than in annuals and that transcriptional variation is mainly independent of age divergence and cytosine methylation. Furthermore, a detailed analysis of the somatic epimutation spectrum indicates that transgenerationally heritable epimutations originate mainly from DNA methylation maintenance errors during mitotic rather than during meiotic cell divisions. CONCLUSION: Taken together, our study provides unprecedented insights into the origin of nucleotide and functional variation in a long-lived perennial plant.


Assuntos
Genoma de Planta , Taxa de Mutação , Populus/genética , Fatores Etários , Metilação de DNA , Epigênese Genética , Expressão Gênica , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA