Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; : e0107524, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177330

RESUMO

Autotrophic bacteria are able to fix CO2 in a great diversity of habitats, even though this dissolved gas is relatively scarce at neutral pH and above. As many of these bacteria rely on CO2 fixation by ribulose 1,5-bisphospate carboxylase/oxygenase (RubisCO) for biomass generation, they must compensate for the catalytical constraints of this enzyme with CO2-concentrating mechanisms (CCMs). CCMs consist of CO2 and HCO3- transporters and carboxysomes. Carboxysomes encapsulate RubisCO and carbonic anhydrase (CA) within a protein shell and are essential for the operation of a CCM in autotrophic Bacteria that use the Calvin-Benson-Basham cycle. Members of the genus Thiomicrospira lack genes homologous to those encoding previously described CA, and prior to this work, the mechanism of function for their carboxysomes was unclear. In this paper, we provide evidence that a member of the recently discovered iota family of carbonic anhydrase enzymes (ιCA) plays a role in CO2 fixation by carboxysomes from members of Thiomicrospira and potentially other Bacteria. Carboxysome enrichments from Thiomicrospira pelophila and Thiomicrospira aerophila were found to have CA activity and contain ιCA, which is encoded in their carboxysome loci. When the gene encoding ιCA was interrupted in T. pelophila, cells could no longer grow under low-CO2 conditions, and CA activity was no longer detectable in their carboxysomes. When T. pelophila ιCA was expressed in a strain of Escherichia coli lacking native CA activity, this strain recovered an ability to grow under low CO2 conditions, and CA activity was present in crude cell extracts prepared from this strain. IMPORTANCE: Here, we provide evidence that iota carbonic anhydrase (ιCA) plays a role in CO2 fixation by some organisms with CO2-concentrating mechanisms; this is the first time that ιCA has been detected in carboxysomes. While ιCA genes have been previously described in other members of bacteria, this is the first description of a physiological role for this type of carbonic anhydrase in this domain. Given its distribution in alkaliphilic autotrophic bacteria, ιCA may provide an advantage to organisms growing at high pH values and could be helpful for engineering autotrophic organisms to synthesize compounds of industrial interest under alkaline conditions.

2.
Cell Adh Migr ; 15(1): 37-57, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33525953

RESUMO

Atypical protein kinase C (aPKC) are involved in progression of many human cancers. Vimentin is expressed during epithelial to mesenchymal transition (EMT). Molecular dynamics of Vimentin intermediate filaments (VIFs) play a key role in metastasis. This article is an effort to provide thorough understanding of the relationship between Vimentin and aPKCs . We demonstrate that diminution of aPKCs lead to attenuate prostate cellular metastasis through the downregulation of Vimentin expression. siRNA knocked-down SNAIL1 and PRRX1 reduce aPKC activity along with Vimentin. Results suggest that aPKCs target multiple activation sites (Ser33/39/56) on Vimentin and therefore is essential for VIF dynamics regulation during the metastasis of prostate cancer cells. Understanding the aPKC related molecular mechanisms may provide a novel therapeutic path for prostate carcinoma.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio , Humanos , Filamentos Intermediários , Masculino , Neoplasias da Próstata/genética , Vimentina/genética
3.
Methods Cell Biol ; 111: 307-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22857935

RESUMO

The JEOL ClairScope is the first truly correlative scanning electron and optical microscope. An inverted scanning electron microscope (SEM) column allows electron images of wet samples to be obtained in ambient conditions in a biological culture dish, via a silicon nitride film window in the base. A standard inverted optical microscope positioned above the dish holder can be used to take reflected light and epifluorescence images of the same sample, under atmospheric conditions that permit biochemical modifications. For SEM, the open dish allows successive staining operations to be performed without moving the holder. The standard optical color camera used for fluorescence imaging can be exchanged for a high-sensitivity monochrome camera to detect low-intensity fluorescence signals, and also cathodoluminescence emission from nanophosphor particles. If these particles are applied to the sample at a suitable density, they can greatly assist the task of perfecting the correlation between the optical and electron images.


Assuntos
Processamento de Imagem Assistida por Computador , Animais , Células COS , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Chlorocebus aethiops , Cromossomos/ultraestrutura , Proteínas de Fluorescência Verde/biossíntese , Humanos , Imuno-Histoquímica , Microdomínios da Membrana/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Mycoplasma/ultraestrutura , Receptores de Superfície Celular/ultraestrutura , Proteínas Recombinantes/biossíntese , Fixação de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA