Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(8): 1662-1677, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33342032

RESUMO

Since the last glacial maximum, soil formation related to ice-cover shrinkage has been one major sink of carbon accumulating as soil organic matter (SOM), a phenomenon accelerated by the ongoing global warming. In recently deglacierized forelands, processes of SOM accumulation, including those that control carbon and nitrogen sequestration rates and biogeochemical stability of newly sequestered carbon, remain poorly understood. Here, we investigate the build-up of SOM during the initial stages (up to 410 years) of topsoil development in 10 glacier forelands distributed on four continents. We test whether the net accumulation of SOM on glacier forelands (i) depends on the time since deglacierization and local climatic conditions (temperature and precipitation); (ii) is accompanied by a decrease in its stability and (iii) is mostly due to an increasing contribution of organic matter from plant origin. We measured total SOM concentration (carbon, nitrogen), its relative hydrogen/oxygen enrichment, stable isotopic (13 C, 15 N) and carbon functional groups (C-H, C=O, C=C) compositions, and its distribution in carbon pools of different thermal stability. We show that SOM content increases with time and is faster on forelands experiencing warmer climates. The build-up of SOM pools shows consistent trends across the studied soil chronosequences. During the first decades of soil development, the low amount of SOM is dominated by a thermally stable carbon pool with a small and highly thermolabile pool. The stability of SOM decreases with soil age at all sites, indicating that SOM storage is dominated by the accumulation of labile SOM during the first centuries of soil development, and suggesting plant carbon inputs to soil (SOM depleted in nitrogen, enriched in hydrogen and in aromatic carbon). Our findings highlight the potential vulnerability of SOM stocks from proglacial areas to decomposition and suggest that their durability largely depends on the relative contribution of carbon inputs from plants.


Assuntos
Camada de Gelo , Solo , Carbono , Nitrogênio , Temperatura
2.
Ecography ; 37(12): 1230-1239, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25722538

RESUMO

Vegetation is a key driver of ecosystem functioning (e.g. productivity and stability) and of the maintenance of biodiversity (e.g. creating habitats for other species groups). While vegetation sensitivity to climate change has been widely investgated, its spatio-temporally response to the dual efects of land management and climate change has been ignored at landscape scale. Here we use a dynamic vegetation model called FATE-HD, which describes the dominant vegetation dynamics and associated functional diversity, in order to anticipate vegetation response to climate and land-use changes in both short and long-term perspectives. Using three contrasted management scenarios for the Ecrins National Park (French Alps) developed in collaboration with the park managers, and one regional climate change scenario, we tracked the dynamics of vegetation structure (forest expansion) and functional diversity over 100 years of climate change and a further 400 additional years of stabilization. As expected, we observed a slow upward shift in forest cover distribution, which appears to be severely impacted by pasture management (i.e. maintenance or abandonment). The tme lag before observing changes in vegetation cover was the result of demographic and seed dispersal processes. However, plant diversity response to environmental changes was rapid. Afer land abandonment, local diversity increased and spatial turnover was reduced, whereas local diversity decreased following land use intensification. Interestingly, in the long term, as both climate and management scenarios interacted, the regional diversity declined. Our innovative spatio-temporally explicit framework demonstrates that the vegetation may have contrasting responses to changes in the short and the long term. Moreover, climate and land-abandonment interact extensively leading to a decrease in both regional diversity and turnover in the long term. Based on our simulations we therefore suggest a continuing moderate intensity pasturing to maintain high levels of plant diversity in this system.

3.
Chemosphere ; 287(Pt 4): 132315, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600011

RESUMO

The range of metals used for industrial purposes - electrical engineering, solar panels, batteries - has increased substantially over the last twenty years. Some of these emerging metals are the subject of geopolitical conflict and are considered critical as their unique properties make them irreplaceable. Many of these elements are poorly studied and their biogeochemical cycles still raise many questions. Aim of this study is to analyse the soil-to-plant transfer of some of these chemical elements and to shed light on their uptake pathways. For this purpose, the geological site of Jas Roux (France) was chosen as this alpine site is naturally rich in critical and potentially toxic elements such as As, Sb, Ba and Tl, but nevertheless is host to a high diversity of plants. Elemental concentrations were analysed in the topsoil and in 12 selected alpine plant species sampled in situ. Statistical tools were used to detect species dependent characteristics in elemental uptake. Our analyses revealed accumulation of rare earth elements by Saxifraga paniculata, selective oxyanion absorption by Hippocrepis comosa, accumulation of Tl by Biscutella laevigata and Galium corrudifolium and an exclusion strategy in Juniperus communis. These findings advance our understanding of the environmental behaviour of critical metals and metalloids such as V, As, Y, Sb, Ce, Ba and Tl and might bare valuable information for phytoremediation applications.


Assuntos
Brassicaceae , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Metais/análise , Metais Pesados/análise , Solo , Poluentes do Solo/análise
4.
Sci Rep ; 12(1): 18268, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36310318

RESUMO

Yttrium (Y) has gained importance in high tech applications and, together with the other rare earth elements (REEs), is also considered to be an emerging environmental pollutant. The alpine plant Saxifraga paniculata was previously shown to display high metal tolerance and an intriguing REE accumulation potential. In this study, we analysed soil grown commercial and wild specimens of Saxifraga paniculata to assess Y accumulation and shed light on the uptake pathway. Laser ablation inductively coupled plasma mass spectrometry and synchrotron-based micro X-ray fluorescence spectroscopy was used to localise Y within the plant tissues and identify colocalized elements. Y was distributed similarly in commercial and wild specimens. Within the roots, Y was mostly located in the epidermis region. Translocation was low, but wild individuals accumulated significantly more Y than commercial ones. In plants of both origins, we observed consistent colocalization of Al, Fe, Y and Ce in all plant parts except for the hydathodes. This indicates a shared pathway during translocation and could explained by the formation of a stable organic complex with citrate, for example. Our study provides important insights into the uptake pathway of Y in S. paniculata, which can be generalised to other plants.


Assuntos
Metais Terras Raras , Saxifragaceae , Humanos , Ítrio/química , Metais Terras Raras/análise , Solo/química , Plantas
5.
Sci Rep ; 11(1): 11128, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045566

RESUMO

High elevation temperate mountains have long been considered species poor owing to high extinction or low speciation rates during the Pleistocene. We performed a phylogenetic and population genomic investigation of an emblematic high-elevation plant clade (Androsace sect. Aretia, 31 currently recognized species), based on plant surveys conducted during alpinism expeditions. We inferred that this clade originated in the Miocene and continued diversifying through Pleistocene glaciations, and discovered three novel species of Androsace dwelling on different bedrock types on the rooftops of the Alps. This highlights that temperate high mountains have been cradles of plant diversity even during the Pleistocene, with in-situ speciation driven by the combined action of geography and geology. Our findings have an unexpected historical relevance: H.-B. de Saussure likely observed one of these species during his 1788 expedition to the Mont Blanc and we describe it here, over two hundred years after its first sighting.


Assuntos
Altitude , Biodiversidade , Plantas , Geografia , Filogenia
6.
J Biogeogr ; 44(11): 2618-2630, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29249850

RESUMO

AIM: Plants occurring on high-alpine summits are generally expected to persist due to adaptations to extreme selective forces caused by the harshest climates where angiosperm life is known to thrive. We assessed the relative effects of this strong environmental filter and of other historical and stochastic factors driving plant community structure in very high-alpine conditions (up to 4,000m). LOCATION: European Alps, Écrins National Park, France. METHODS: Using species occurrence data collected from floristic surveys on 15 summits (2,791 m - 4,102 m a.s.l.) throughout the Écrins range, along with existing molecular sequence data obtained from GenBank, we used a mega-phylogenetic approach to evaluate the phylogenetic structure of high-alpine plant species assemblages. We used three nested species pools and two null models to address the importance of species-specific and species-neutral processes for driving coexistence. RESULTS: Compared to the entire species pool of the study region, alpine summits exhibited a strong signal of phylogenetic clustering. Restricting statistical sampling to environmentally and historically defined species pools reduced the significance of this pattern. However, we could not reject a model that explicitly incorporates neutral colonization and local extinction in shaping community structure for dominant plant orders. Between summits, phylogenetic turnover was generally lower than expected. Environmental drivers did not explain overall phylogenetic patterns, but we found significant geographic and climatic structure in phylogenetic diversity at finer taxonomic scales. MAIN CONCLUSIONS: Although we found evidence for strong phylogenetic clustering within alpine summits, we were not able to reject models of species-neutral processes to explain patterns of floristic diversity. Our results suggest that plant community structure in high-alpine regions can also be shaped by neutral processes, and not through the sole action of environmental selection as traditionally assumed for harsh and stressful environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA