RESUMO
Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K(+). This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K(+) content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K(+) ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K(+)-binding sites on an increasingly acidic protein surface.
Assuntos
Citoplasma/metabolismo , Potássio/metabolismo , Proteobactérias/metabolismo , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Sítios de Ligação , Biologia Computacional/métodos , Relação Dose-Resposta a Droga , Ectothiorhodospiraceae/metabolismo , Elétrons , Evolução Molecular , Genômica , Íons , Focalização Isoelétrica , Modelos Genéticos , Potássio/química , Cloreto de Potássio/química , Proteoma , ProteômicaRESUMO
The short lifespan of Caenorhabditis elegans enables the efficient investigation of probiotic interventions affecting stress and longevity involving the potential therapeutic value of Lactococcus lactis and Leuconostoc mesenteroides isolated from organic basil. The lactic acid bacteria were cultured from the produce collected from a local grocery store in Tulsa, Oklahoma, and then identified through 16S rDNA sequencing and biochemical tests. To dive deep into this analysis for potential probiotic therapy, we used fluorescent reporters that allow us to assess the differential induction of multiple stress pathways such as oxidative stress and the cytoplasmic, endoplasmic reticulum, and the mitochondrial unfolded protein response. This is combined with the classic health span measurements of survival, development, and fecundity, allowing a wide range of organismal observations of the different communities of microbes supported by probiotic supplementation with Lactococcus lactis and Leuconostoc mesenteroides. These strains were initially assessed in relation to the Escherichia coli feeding strain OP50 and the C. elegans microbiome. The supplementation showed a reduction in the median lifespan of the worms colonized within the microbiome. This was unsurprising, as negative results are common when probiotics are introduced into healthy microbiomes. To further assess the supplementation potential of these strains on an unhealthy (undifferentiated) microbiome, the typical axenic C. elegans diet, OP50, was used to simulate this single-species biome. The addition of lactic acid bacteria to OP50 led to a significant improvement in the median and overall survival in simulated biomes, indicating their potential in probiotic therapy. The study analyzed the supplemented cultures in terms of C. elegans' morphology, locomotor behavior, reproduction, and stress responses, revealing unique characteristics and stress response patterns for each group. As the microbiome's influence on the health span gains interest, the study aims to understand the microbiome relationships that result in differential stress resistance and lifespans by supplementing microbiomes with Lactococcus lactis and Leuconostoc mesenteroides isolated from organic basil in C. elegans.
RESUMO
Here, we report the draft genome sequence of Lactococcus lactis strain PrHT3, which was isolated from organic basil. This strain possesses one chromosome and two plasmids. This strain possesses potential probiotic characteristics.
RESUMO
Two pasteurization-resistant strains, VHT1 and VHT2, of environmental, viable but nonculturable, pathogenic Vibrio parahaemolyticus were isolated from environmental oysters. Their whole-genome sequences were constructed. The genome sizes for VHT1 and VHT2 are 5.11 Mbp and 5.26 Mbp, respectively.
RESUMO
Homocystinuria is a medical condition that can have widespread and harmful effects on multiple organ systems within the body. This disease is caused by a deficiency in one of the enzymes involved in the methionine metabolism pathway. One example would be a deficiency in cystathionine-ß-synthase (CBS), which is seen in classical homocystinuria. A deficiency in CBS can lead to elevated levels of homocysteine (HCY) and possible depletion of methionine and/or cysteine. There are several different treatment options for patients with this condition, one of which is the administration of the drug betaine. Here we review the use of betaine to decrease these elevated levels of homocysteine back to within normal ranges. Published literature indicates that the use of this choline derivative is most beneficial to patients who are either not compliant with the recommended low methionine and low protein diet or wish to consume a less restricted diet.
RESUMO
Halophiles utilize two distinct osmoprotection strategies. The accumulation of organic compatible solutes such as glycine betaine does not perturb the functioning of cytoplasmic components, but represents a large investment of energy and carbon. KCl is an energetically attractive alternative osmoprotectant, but requires genome-wide modifications to establish a highly acidic proteome. Most extreme halophiles are optimized for the use of one of these two strategies. Here we examine the extremely halophilic Proteobacterium Halorhodospira halophila and report that medium K+ concentration dramatically alters its osmoprotectant use. When grown in hypersaline media containing substantial K+ concentrations, H. halophila accumulates molar concentrations of KCl. However, at limiting K+ concentrations the organism switches to glycine betaine as its major osmoprotectant. In contrast, the closely related organism Halorhodospira halochloris is limited to using compatible solutes. H. halophila performs both de novo synthesis and uptake of glycine betaine, matching the biosynthesis and transport systems encoded in its genome. The medium K+ concentration (~10 mM) at which the KCl to glycine betaine osmoprotectant switch in H. halophila occurs is near the K+ content of the lake from which it was isolated, supporting an ecological relevance of this osmoprotectant strategy.
Assuntos
Betaína/metabolismo , Halorhodospira halophila/metabolismo , Cloreto de Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Betaína/análise , Halorhodospira halophila/genética , Halorhodospira halophila/crescimento & desenvolvimento , Concentração Osmolar , Cloreto de Potássio/análise , Proteoma , EspectrofotometriaRESUMO
Halorhodospira halochloris is an extremely halophilic bacterium isolated from hypersaline Wadi Nantrun lakes in Egypt. Here we report the draft genome sequence of this gammaproteobacteria (GI number: 589289709, GenBank Accession number: CP007268). The 3.5-Mb genome encodes for photosynthesis and biosynthesis of organic osmoprotectants. Comparison with the genome of H.halophila promises to yield insights into the evolution of halophilic adaptations.
RESUMO
Halorhodospira halophila is among the most halophilic organisms known. It is an obligately photosynthetic and anaerobic purple sulfur bacterium that exhibits autotrophic growth up to saturated NaCl concentrations. The type strain H. halophila SL1 was isolated from a hypersaline lake in Oregon. Here we report the determination of its entire genome in a single contig. This is the first genome of a phototrophic extreme halophile. The genome consists of 2,678,452 bp, encoding 2,493 predicted genes as determined by automated genome annotation. Of the 2,407 predicted proteins, 1,905 were assigned to a putative function. Future detailed analysis of this genome promises to yield insights into the halophilic adaptations of this organism, its ability for photoautotrophic growth under extreme conditions, and its characteristic sulfur metabolism.