Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(1): e1009825, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35089918

RESUMO

Proteins ensure their biological functions by interacting with each other. Hence, characterising protein interactions is fundamental for our understanding of the cellular machinery, and for improving medicine and bioengineering. Over the past years, a large body of experimental data has been accumulated on who interacts with whom and in what manner. However, these data are highly heterogeneous and sometimes contradictory, noisy, and biased. Ab initio methods provide a means to a "blind" protein-protein interaction network reconstruction. Here, we report on a molecular cross-docking-based approach for the identification of protein partners. The docking algorithm uses a coarse-grained representation of the protein structures and treats them as rigid bodies. We applied the approach to a few hundred of proteins, in the unbound conformations, and we systematically investigated the influence of several key ingredients, such as the size and quality of the interfaces, and the scoring function. We achieved some significant improvement compared to previous works, and a very high discriminative power on some specific functional classes. We provide a readout of the contributions of shape and physico-chemical complementarity, interface matching, and specificity, in the predictions. In addition, we assessed the ability of the approach to account for protein surface multiple usages, and we compared it with a sequence-based deep learning method. This work may contribute to guiding the exploitation of the large amounts of protein structural models now available toward the discovery of unexpected partners and their complex structure characterisation.


Assuntos
Sítios de Ligação/fisiologia , Simulação de Acoplamento Molecular , Conformação Proteica , Mapas de Interação de Proteínas/fisiologia , Proteínas , Algoritmos , Biologia Computacional , Bases de Dados de Proteínas , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo
2.
Proteins ; 87(11): 952-965, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31199528

RESUMO

The growing body of experimental and computational data describing how proteins interact with each other has emphasized the multiplicity of protein interactions and the complexity underlying protein surface usage and deformability. In this work, we propose new concepts and methods toward deciphering such complexity. We introduce the notion of interacting region to account for the multiple usage of a protein's surface residues by several partners and for the variability of protein interfaces coming from molecular flexibility. We predict interacting patches by crossing evolutionary, physicochemical and geometrical properties of the protein surface with information coming from complete cross-docking (CC-D) simulations. We show that our predictions match well interacting regions and that the different sources of information are complementary. We further propose an indicator of whether a protein has a few or many partners. Our prediction strategies are implemented in the dynJET2 algorithm and assessed on a new dataset of 262 protein on which we performed CC-D. The code and the data are available at: http://www.lcqb.upmc.fr/dynJET2/.


Assuntos
Proteínas/metabolismo , Algoritmos , Animais , Sítios de Ligação , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas/química , Software
3.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543809

RESUMO

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Assuntos
Biologia Computacional/educação , Biologia Computacional/métodos , Pesquisa/educação , Humanos , Projetos de Pesquisa , Estudantes , Universidades
4.
J Chem Inf Model ; 57(11): 2613-2617, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28991473

RESUMO

INTerface Builder (INTBuilder) is a fast, easy-to-use program to compute protein-protein interfaces. It is designed to retrieve interfaces from molecular docking software outputs in an empirically determined linear complexity. INTBuilder directly reads the output formats of popular docking programs like ATTRACT, HEX, MAXDo, and ZDOCK, as well as a more generic format and Protein Data Bank (PDB) files. It identifies interacting surfaces at both residue and atom resolutions. INTerface Builder is an open source software written in C and freely available for noncommercial use (CeCILL license) at https://www.lcqb.upmc.fr/INTBuilder .


Assuntos
Biologia Computacional/métodos , Mapas de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Conformação Proteica , Bibliotecas de Moléculas Pequenas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA