Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R328-R337, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34231420

RESUMO

The sympathetic nervous system (SNS) plays a crucial role in the regulation of renal and hepatic functions. Although sympathetic nerves to the kidney and liver have been identified in many species, specific details are lacking in the mouse. In the absence of detailed information of sympathetic prevertebral innervation of specific organs, selective manipulation of a specific function will remain challenging. Despite providing major postganglionic inputs to abdominal organs, limited data are available about the mouse celiac-superior mesenteric complex. We used tyrosine hydroxylase (TH) and dopamine ß-hydroxylase (DbH) reporter mice to visualize abdominal prevertebral ganglia. We found that both the TH and DbH reporter mice are useful models for identification of ganglia and nerve bundles. We further tested if the celiac-superior mesenteric complex provides differential inputs to the mouse kidney and liver. The retrograde viral tracer, pseudorabies virus (PRV)-152 was injected into the cortex of the left kidney or the main lobe of the liver to identify kidney-projecting and liver-projecting neurons in the celiac-superior mesenteric complex. iDISCO immunostaining and tissue clearing were used to visualize unprecedented anatomical detail of kidney-related and liver-related postganglionic neurons in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia compared with TH-positive neurons. Kidney-projecting neurons were restricted to the suprarenal and aorticorenal ganglia, whereas only sparse labeling was observed in the celiac-superior mesenteric complex. In contrast, liver-projecting postganglionic neurons were observed in the celiac-superior mesenteric complex and aorticorenal and suprarenal ganglia, suggesting spatial separation between the sympathetic innervation of the mouse kidney and liver.


Assuntos
Gânglios Simpáticos/metabolismo , Rim/metabolismo , Fígado/metabolismo , Sistema Nervoso Simpático/metabolismo , Animais , Dopamina beta-Hidroxilase/metabolismo , Rim/inervação , Masculino , Camundongos , Neurônios/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
2.
J Physiol ; 597(1): 283-301, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312491

RESUMO

KEY POINTS: To maintain appropriate blood flow to various tissues of the body under a variety of physiological states, autonomic nervous system reflexes regulate regional sympathetic nerve activity and arterial blood pressure. Our data obtained in anaesthetized rats revealed that glycine released in the rostral ventrolateral medulla (RVLM) plays a critical role in maintaining arterial baroreflex sympathoinhibition. Manipulation of brainstem nuclei with known inputs to the RVLM (nucleus tractus solitarius and caudal VLM) unmasked tonic glycinergic inhibition in the RVLM. Whole-cell, patch clamp recordings demonstrate that both GABA and glycine inhibit RVLM neurons. Potentiation of neurotransmitter release from the active synaptic inputs in the RVLM produced saturation of GABAergic inhibition and emergence of glycinergic inhibition. Our data suggest that GABA controls threshold excitability, wherreas glycine increases the strength of inhibition under conditions of increased synaptic activity within the RVLM. ABSTRACT: The arterial baroreflex is a rapid negative-feedback system that compensates changes in blood pressure by adjusting the output of presympathetic neurons in the rostral ventrolateral medulla (RVLM). GABAergic projections from the caudal VLM (CVLM) provide a primary inhibitory input to presympathetic RVLM neurons. Although glycine-dependent regulation of RVLM neurons has been proposed, its role in determining RVLM excitability is ill-defined. The present study aimed to determine the physiological role of glycinergic neurotransmission in baroreflex function, identify the mechanisms for glycine release, and evaluate co-inhibition of RVLM neurons by GABA and glycine. Microinjection of the glycine receptor antagonist strychnine (4 mm, 100 nL) into the RVLM decreased the duration of baroreflex-mediated inhibition of renal sympathetic nerve activity (control = 12 ± 1 min; RVLM-strychnine = 5.1 ± 1 min), suggesting that RVLM glycine plays a critical role in regulating the time course of sympathoinhibition. Blockade of output from the nucleus tractus solitarius and/or disinhibition of the CVLM unmasked tonic glycinergic inhibition of the RVLM. To evaluate cellular mechanisms, RVLM neurons were retrogradely labelled (prior injection of pseudorabies virus PRV-152) and whole-cell, patch clamp recordings were obtained in brainstem slices. Under steady-state conditions GABAergic inhibition of RVLM neurons predominated and glycine contributed less than 25% of the overall inhibition. By contrast, stimulation of synaptic inputs in the RVLM decreased GABAergic inhibition to 53%; and increased glycinergic inhibition to 47%. Thus, under conditions of increased synaptic activity in the RVLM, glycinergic inhibition is recruited to strengthen sympathoinhibition.


Assuntos
Barorreflexo/fisiologia , Glicina/fisiologia , Bulbo/fisiologia , 4-Aminopiridina/farmacologia , Animais , Barorreflexo/efeitos dos fármacos , Bicuculina/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Glicinérgicos/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Bulbo/efeitos dos fármacos , Muscimol/farmacologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Sprague-Dawley , Estricnina/farmacologia , Sistema Nervoso Simpático/fisiologia , Transmissão Sináptica , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/fisiologia
3.
J Neurophysiol ; 121(1): 140-151, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461371

RESUMO

Transient receptor potential vanilloid type 1 (TRPV1) is a ligand-gated ion channel expressed in the peripheral and central nervous systems. TRPV1-dependent mechanisms take part in a wide range of physiological and pathophysiological pathways including the regulation of homeostatic functions. TRPV1 expression in the hypothalamus has been described as well as evidence that TRPV1-dependent excitatory inputs to hypothalamic preautonomic neurons are diminished in diabetic conditions. Here we aimed to determine the functional expression of TRPV1 in two hypothalamic nuclei known to be involved in the central control of metabolism and to test the hypothesis that TRPV1-expressing neurons receive TRPV1-expressing inputs. A mouse model (TRPV1Cre/tdTom) was generated to identify TRPV1-expressing cells and determine the cellular properties of TRPV1-expressing neurons in adult mice. Our study demonstrated the functional expression of TRPV1 in the dorsomedial hypothalamic nucleus and paraventricular nucleus in adult mice. Our findings revealed that a subset of TRPV1Cre/tdTom neurons receive TRPV1-expressing excitatory inputs, indicating direct interaction between TRPV1-expressing neurons. In addition, astrocytes likely play a role in the modulation of TRPV1-expressing neurons. In summary, this study identified specific hypothalamic regions where TRPV1 is expressed and functional in adult mice and the existence of direct connections between TRPV1Cre/tdTom neurons. NEW & NOTEWORTHY Transient receptor potential vanilloid type 1 (TRPV1) is expressed in the hypothalamus, and TRPV1-dependent regulation of preautonomic neurons is decreased in hyperglycemic conditions. Our study demonstrated functional expression of TRPV1 in two hypothalamic nuclei involved in the control of energy homeostasis. Our results also revealed that a subset of TRPV1-expressing neurons receive TRPV1-expressing excitatory inputs. These findings suggest direct interaction between TRPV1-expressing neurons.


Assuntos
Hipotálamo/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Dependovirus , Feminino , Hipotálamo/citologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Potenciais da Membrana/fisiologia , Camundongos Transgênicos , Neurônios/citologia , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/genética , Técnicas de Cultura de Tecidos , Proteína Vermelha Fluorescente
4.
J Neurosci ; 36(18): 5034-46, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27147656

RESUMO

UNLABELLED: The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRb(POA) neurons) and modulate reproductive function. However, LepRb(POA) neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRb(POA) neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRb(POA) neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRb(POA) neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. SIGNIFICANCE STATEMENT: Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRb(POA) neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRb(POA) neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRb(POA) neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study significantly expands our current understanding of central circuits and mechanisms that modulate energy homeostasis.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Peso Corporal/fisiologia , Glutamatos/fisiologia , Homeostase/fisiologia , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Receptores para Leptina/biossíntese , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/fisiologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/fisiologia , Camundongos , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Receptores Adrenérgicos beta 3/fisiologia , Receptores para Leptina/genética , Temperatura
5.
Am J Pathol ; 183(5): 1608-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24160325

RESUMO

By using pseudorabies virus expressing green fluorescence protein, we found that efferent bone marrow-neural connections trace to sympathetic centers of the central nervous system in normal mice. However, this was markedly reduced in type 1 diabetes, suggesting a significant loss of bone marrow innervation. This loss of innervation was associated with a change in hematopoiesis toward generation of more monocytes and an altered diurnal release of monocytes in rodents and patients with type 1 diabetes. In the hypothalamus and granular insular cortex of mice with type 1 diabetes, bone marrow-derived microglia/macrophages were activated and found at a greater density than in controls. Infiltration of CD45(+)/CCR2(+)/GR-1(+)/Iba-1(+) bone marrow-derived monocytes into the hypothalamus could be mitigated by treatment with minocycline, an anti-inflammatory agent capable of crossing the blood-brain barrier. Our studies suggest that targeting central inflammation may facilitate management of microvascular complications.


Assuntos
Medula Óssea/inervação , Medula Óssea/patologia , Sistema Nervoso Central/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/patologia , Inflamação/patologia , Animais , Medula Óssea/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Proteínas de Fluorescência Verde/metabolismo , Hematopoese/efeitos dos fármacos , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/fisiologia , Humanos , Inflamação/complicações , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Minociclina/farmacologia , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Monócitos/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neurotransmissores/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/patologia
6.
J Neurophysiol ; 110(11): 2637-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027107

RESUMO

The rostral ventrolateral medulla (RVLM) is a critical component of the sympathetic nervous system regulating homeostatic functions including arterial blood pressure. Using the transsynaptic retrograde viral tracer PRV-152, we identified kidney-related neurons in the RVLM. We found that PRV-152-labeled RVLM neurons displayed an unusually large persistent, tonic current to both glutamate, via N-methyl-d-aspartate (NMDA) and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)/kainate receptors, and to γ-aminobutyric acid (GABA), via GABAA receptors, in the absence of large-scale phasic neurotransmission with whole cell patch-clamp recordings. A cocktail of potent NMDA and AMPA/kainate ionotropic glutamate receptor antagonists AP-5 (50 µM) and CNQX (10 µM) revealed a two-component somatic tonic excitatory current with an overall amplitude of 42.6 ± 13.4 pA. Moreover, application of the GABAA receptor blockers gabazine (15 µM) and bicuculline (30 µM) revealed a robust somatic tonic inhibitory current with an average amplitude of 196.3 ± 39.3 pA. These findings suggest that the tonic current plays a role in determining the resting membrane potential, input resistance, and firing rate of RVLM neurons. The magnitude of the tonic inhibitory current demonstrates that GABAergic inhibition plays a critical role in regulation of kidney-related RVLM neurons. Our results indicate that the GABAergic tonic current may determine the basal tone of firing activity in kidney-related RVLM neurons.


Assuntos
Potenciais de Ação , Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Rim/inervação , Bulbo/fisiologia , Neurônios/fisiologia , Animais , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Bulbo/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
7.
J Neurophysiol ; 110(9): 2192-202, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23966668

RESUMO

Activity of presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus is known to play an important role in the regulation of sympathetic outflow. Sympathetic overactivity is associated with many pathophysiological conditions such as diabetes mellitus and hypertension; however, the underlying synaptic mechanisms are poorly understood. In this study, we examined the GABAergic inhibitory synaptic control of kidney-related presympathetic PVN neurons in the streptozotocin-treated type 1 diabetic mouse model, using patch-clamp slice electrophysiology in combination with retrograde labeling. Type 1 diabetes resulted in decreased frequency of miniature inhibitory postsynaptic currents (mIPSCs). Our data also demonstrated a reduction of mIPSC amplitude and mean inhibitory current without alteration of input resistance. Furthermore, our data revealed decreased tonic GABAergic inhibition of kidney-related PVN neurons in diabetic conditions, which was consistent with the observed increased excitability of the presympathetic PVN neurons. In summary, our data demonstrated decreased phasic and tonic inhibitory control of kidney-related presympathetic PVN neurons that suggest altered sympathetic circuitry in type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Neurônios GABAérgicos/fisiologia , Potenciais Pós-Sinápticos Inibidores , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Animais , Antagonistas GABAérgicos/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Rim/inervação , Masculino , Camundongos , Potenciais Pós-Sinápticos em Miniatura , Núcleo Hipotalâmico Paraventricular/citologia
8.
Auton Neurosci ; 245: 103058, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36538864

RESUMO

Brown adipose tissue (BAT) contributes to energy homeostasis via nonshivering thermogenesis. The BAT is densely innervated by the sympathetic nervous system (SNS) and activity of pre-autonomic neurons modulates the sympathetic outflow. Leptin, an adipocyte hormone, alters energy homeostasis and thermogenesis of BAT via several neuronal circuits; however, the cellular effects of leptin on interscapular BAT (iBAT)-related neurons in the hypothalamus remain to be determined. In this study, we used pseudorabies virus (PRV) to identify iBAT-related neurons in the paraventricular nucleus (PVN) of the hypothalamus and test the hypothesis that iBAT-related PVN neurons are modulated by leptin. Inoculation of iBAT with PRV in leptin receptor reporter mice (Lepr:EGFP) demonstrated that a population of iBAT-related PVN neurons expresses Lepr receptors. Our electrophysiological findings revealed that leptin application caused hyperpolarization in some of iBAT-related PVN neurons. Bath application of leptin also modulated excitatory and inhibitory neurotransmission to most of iBAT-related PVN neurons. Using channel rhodopsin assisted circuit mapping we found that GABAergic and glutamatergic Lepr-expressing neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA) project to PVN neurons; however, connected iBAT-related PVN neurons receive exclusively inhibitory signals from Lepr-expressing dDMH/DHA neurons.


Assuntos
Leptina , Núcleo Hipotalâmico Paraventricular , Camundongos , Animais , Leptina/metabolismo , Leptina/farmacologia , Receptores para Leptina , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Termogênese/fisiologia , Sistema Nervoso Simpático/fisiologia
9.
Cells ; 12(8)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37190103

RESUMO

Stimulation of hepatic sympathetic nerves increases glucose production and glycogenolysis. Activity of pre-sympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the ventrolateral and ventromedial medulla (VLM/VMM) largely influence the sympathetic output. Increased activity of the sympathetic nervous system (SNS) plays a role in the development and progression of metabolic diseases; however, despite the importance of the central circuits, the excitability of pre-sympathetic liver-related neurons remains to be determined. Here, we tested the hypothesis that the activity of liver-related neurons in the PVN and VLM/VMM is altered in diet-induced obese mice, as well as their response to insulin. Patch-clamp recordings were conducted from liver-related PVN neurons, VLM-projecting PVN neurons, and pre-sympathetic liver-related neurons in the ventral brainstem. Our data demonstrate that the excitability of liver-related PVN neurons increased in high-fat diet (HFD)-fed mice compared to mice fed with control diet. Insulin receptor expression was detected in a population of liver-related neurons, and insulin suppressed the firing activity of liver-related PVN and pre-sympathetic VLM/VMM neurons in HFD mice; however, it did not affect VLM-projecting liver-related PVN neurons. These findings further suggest that HFD alters the excitability of pre-autonomic neurons as well as their response to insulin.


Assuntos
Dieta Hiperlipídica , Insulinas , Camundongos , Animais , Neurônios/metabolismo , Fígado , Encéfalo , Insulinas/metabolismo
10.
J Neurosci ; 31(39): 14024-31, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957263

RESUMO

Emerging data indicate that central neurons participate in diabetic processes by modulating autonomic output from neurons in the dorsal motor nucleus of the vagus (DMV). We tested the hypothesis that synaptic modulation by transient receptor potential vanilloid type 1 (TRPV1) receptors is reduced in the DMV in slices from a murine model of type 1 diabetes. The TRPV1 agonist capsaicin robustly enhanced glutamate release onto DMV neurons by acting at preterminal receptors in slices from intact mice, but failed to do so in slices from diabetic mice. TRPV1 receptor protein expression in the vagal complex was unaltered. Brief insulin preapplication restored TRPV1-dependent modulation of glutamate release in a PKC- and PI3K-dependent manner. The restorative effect of insulin was prevented by brefeldin A, suggesting that insulin induced TRPV1 receptor trafficking to the terminal membrane. Central vagal circuits critical to the autonomic regulation of metabolism undergo insulin-dependent synaptic plasticity involving TRPV1 receptor modulation in diabetic mice after several days of chronic hyperglycemia.


Assuntos
Tronco Encefálico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Rede Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Canais de Cátion TRPV/fisiologia , Nervo Vago/fisiologia , Animais , Tronco Encefálico/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Regulação para Baixo/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Insulina/fisiologia , Masculino , Camundongos , Camundongos Obesos , Neurônios Motores/fisiologia , Rede Nervosa/fisiopatologia , Sistema Nervoso Parassimpático/citologia , Sistema Nervoso Parassimpático/fisiologia , Canais de Cátion TRPV/antagonistas & inibidores
11.
J Neuropathol Exp Neurol ; 68(2): 168-78, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19151624

RESUMO

The retrograde transsynaptic tracer pseudorabies virus (PRV) is used as a marker for synaptic connectivity in the spinal cord. Using PRV, we sought to document putative synaptic plasticity below a high thoracic (T) spinal cord transection. This lesion has been linked to the development of a number of debilitating conditions, including autonomic dysreflexia. Two weeks after injury, complete T4-transected and/or T4-hemisected and sham rats were injected with PRV-expressing enhanced green fluorescent protein (EGFP) or monomeric red fluorescent protein (mRFP1) into the kidneys. We expected greater PRV labeling after injury because of the plasticity of spinal circuitry, but 96 hours post-PRV-EGFP inoculation, we found fewer EGFP+ cells in the thoracolumbar gray matter of T4-transected compared with sham rats (p < 0.01); Western blot analysis corroborated decreased EGFP protein levels (p < 0.01). Moreover, viral glycoproteins that are critical for cell adsorption and entry were also reduced in the thoracolumbar spinal cord of injured versus sham rats (p < 0.01). Pseudorabies virus labeling of sympathetic postganglionic neurons in the celiac ganglia innervating the kidneys was also significantly reduced in injured versus sham rats (p < 0.01). By contrast, the numbers and distribution of Fluoro-Gold-labeled (intraperitoneal injection) sympathetic preganglionic neurons throughout the sampled regions appeared similar in injured and sham rats. These results question whether spinal cord injury exclusively retards PRV expression and/or transport or whether this injury broadly affects host cell-viral interactions.


Assuntos
Disreflexia Autonômica/metabolismo , Transporte Axonal/fisiologia , Herpesvirus Suídeo 1/metabolismo , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Sistema Nervoso Simpático/metabolismo , Fibras Adrenérgicas/fisiologia , Animais , Disreflexia Autonômica/etiologia , Disreflexia Autonômica/fisiopatologia , Regulação para Baixo/fisiologia , Feminino , Gânglios Simpáticos/metabolismo , Gânglios Simpáticos/fisiopatologia , Proteínas de Fluorescência Verde/genética , Rim/inervação , Proteínas Luminescentes/genética , Neurônios/citologia , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Coloração e Rotulagem/métodos , Estilbamidinas , Sistema Nervoso Simpático/fisiopatologia , Proteínas Virais de Fusão/metabolismo , Proteína Vermelha Fluorescente
12.
Chromatographia ; 69(1-2): 1-7, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20046895

RESUMO

A quantitative method has been developed and validated for the simultaneous determination of anandamide (AEA), docosatetraenylethanolamide (DEA) and N-arachidonyldopamine (NADA) in dorsal vagal complex (DVC) of rat brainstem by liquid chromatographic-electrospray ionization mass spectrometry. The analytes were extracted from the tissue samples of rat brainstem by a single step liquid extraction technique using acetonitrile. The chromatographic separation was conducted on a C18 column using a gradient mobile phase consisting of methanol and water at a flow rate of 0.3 mL min(-1). The analytes were quantified by positive electrospray ionization mass spectrometry with selected ion monitoring (SIM) mode. The limits of detection (LOD) for AEA, DEA and NADA were 0.5, 1 and 0.5 ng mL(-1), respectively. This method required only simple processing of the samples and could be applied to monitor the change in the level of these compounds in DVC of the rat brain tissue. Time dependent (10-70 min) accumulation of the endocannabinoids (AEA, DEA, and NADA) in brain tissue was also studied, which included a novel examination of the accumulation of DEA as a function of time in rat brain tissue after decapitation.

13.
Am J Med Sci ; 357(1): 57-66, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466736

RESUMO

BACKGROUND: Elevated advanced glycation end products (AGE) in diabetes mellitus (DM) are implicated in the progression of DM-associated tissue injury, including diabetic nephropathy. The intrarenal renin-angiotensin system, in particular augmentation of angiotensinogen (AGT) in proximal tubular cells (PTC), plays a crucial role in the development of diabetic nephropathy. This study investigated hypothesis that AGE stimulates AGT production in PTC. MATERIALS AND METHODS: Urinary AGT and AGE levels in streptozotocin-induced DM mice were measured by enzyme-linked immunosorbent assays. AGT expression and secretion were evaluated in cultured rat PTC receiving 0-200 µg/ml AGE-BSA treatments for 24 hours. Furthermore, intracellular signaling pathways activated by AGE were elucidated. RESULTS: DM mice exhibited greater urinary AGT and AGE levels compared to control mice (AGT: 21.6 ± 5.5 ng/day vs. 190.1 ± 57.8 ng/day, AGE: 139.1 ± 21.6 µg/day vs. 332.8 ± 102.7 µg/day). In cultured PTC, treatment with AGE-BSA enhanced AGT mRNA expression (3.43 ± 0.11-fold compared to control), intracellular AGT protein levels (3.60 ± 0.38-fold), and secreted AGT levels (2.11 ± 0.18-fold). On the other hand, AGT levels were not altered in PTC receiving nonglycated BSA. Recombinant soluble AGE receptor, which competes with endogenous AGE receptor, diminished the AGE-induced AGT upregulation, suggesting that AGE-BSA stimulates AGT expression via activation of the AGE receptor. Enhanced phosphorylation of ERK1/2 and c-Jun, but not p38 MAP kinase, were observed in AGE-BSA-treated PTC. AGE-induced AGT augmentation was attenuated by an ERK inhibitor. CONCLUSIONS: The findings indicate that AGE enhances proximal tubular AGT expression via ERK1/2, which can exacerbate the development of diabetic related kidney injury.


Assuntos
Angiotensinogênio/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Túbulos Renais Proximais/metabolismo , Sistema Renina-Angiotensina/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Elife ; 72018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29761783

RESUMO

The adipokine leptin acts on the brain to regulate energy balance but specific functions in many brain areas remain poorly understood. Among these, the preoptic area (POA) is well known to regulate core body temperature by controlling brown fat thermogenesis, and we have previously shown that glutamatergic, long-form leptin receptor (Lepr)-expressing neurons in the POA are stimulated by warm ambient temperature and suppress energy expenditure and food intake. Here we further investigate the role of POA leptin signaling in body weight regulation and its relationship to body temperature regulation in mice. We show that POA Lepr signaling modulates energy expenditure in response to internal energy state, and thus contributes to body weight homeostasis. However, POA leptin signaling is not involved in ambient temperature-dependent metabolic adaptations. Our study reveals a novel cell population through which leptin regulates body weight.


Assuntos
Regulação da Temperatura Corporal , Metabolismo Energético , Homeostase , Leptina/metabolismo , Área Pré-Óptica/fisiologia , Transdução de Sinais , Animais , Peso Corporal , Camundongos
15.
J Neurosci ; 26(38): 9666-72, 2006 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16988037

RESUMO

Vanilloid type-1 receptors (VR1) are abundant in the dorsal vagal complex, where their function is mostly unknown. We examined the role of VR1 in regulating synaptic inputs to neurons of the dorsal motor nucleus of the vagus (DMV). Using patch-clamp recordings from DMV neurons in brainstem slices, capsaicin was found to increase action potential-independent inhibitory input onto DMV neurons. This rapid effect was mimicked by application of the endogenous cannabinoid, anandamide and blocked by VR1 antagonists. The VR1-mediated facilitation of synaptic inhibition was reduced by ionotropic and metabotropic glutamate receptor antagonists, suggesting an indirect, heterosynaptic enhancement of GABA release caused by a VR1-mediated increase in glutamate release from presynaptic terminals of excitatory neurons. Application of L-glutamate also increased GABA release. The paired-pulse ratio was increased for IPSCs evoked after electrical stimulation of the nucleus tractus solitarius, but the effect was slower than for the enhancement of spontaneous and miniature IPSCs. Capsaicin also increased the frequency of glutamatergic postsynaptic currents in a VR1-mediated manner. Results of these studies suggest that VR1-containing glutamatergic terminals contact DMV neurons. Activation of VR1 potently enhances glutamate release onto GABAergic terminals, facilitating GABA release. Endogenous cannabinoids can thereby rapidly enhance inhibitory input to DMV neurons via VR1-mediated presynaptic mechanisms.


Assuntos
Inibição Neural/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Canais de Cátion TRPV/fisiologia , Nervo Vago/fisiologia , Animais , Capsaicina/farmacologia , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Canais de Cátion TRPV/agonistas , Nervo Vago/efeitos dos fármacos
16.
Semin Immunopathol ; 38(3): 397-406, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26403087

RESUMO

Diabetes mellitus and obesity, which is a major risk factor in the development of type 2 diabetes mellitus, have reached epidemic proportions worldwide including the USA. The current statistics and forecasts, both short- and long-term, are alarming and predict severe problems in the near future. Therefore, there is a race for developing new compounds, discovering new receptors, or finding alternative solutions to prevent and/or treat the symptoms and complications related to obesity and diabetes mellitus. It is well demonstrated that members of the transient receptor potential (TRP) superfamily play a crucial role in a variety of biological functions both in health and disease. In the recent years, transient receptor potential vanilloid type 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) were shown to have beneficial effects on whole body metabolism including glucose homeostasis. TRPV1 and TRPA1 have been associated with control of weight, pancreatic function, hormone secretion, thermogenesis, and neuronal function, which suggest a potential therapeutic value of these channels. This review summarizes recent findings regarding TRPV1 and TRPA1 in association with whole body metabolism with emphasis on obese and diabetic conditions.


Assuntos
Canais de Cálcio/metabolismo , Diabetes Mellitus/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Obesidade/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Tecido Adiposo/metabolismo , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Sistema Nervoso Autônomo/metabolismo , Diabetes Mellitus/terapia , Dietoterapia , Suplementos Nutricionais , Grelina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Ligantes , Proteínas do Tecido Nervoso/agonistas , Obesidade/terapia , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPV/agonistas , Canais de Potencial de Receptor Transitório/agonistas
17.
Pharmaceuticals (Basel) ; 9(3)2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27548188

RESUMO

During the last three to four decades the prevalence of obesity and diabetes mellitus has greatly increased worldwide, including in the United States. Both the short- and long-term forecasts predict serious consequences for the near future, and encourage the development of solutions for the prevention and management of obesity and diabetes mellitus. Transient receptor potential (TRP) channels were identified in tissues and organs important for the control of whole body metabolism. A variety of TRP channels has been shown to play a role in the regulation of hormone release, energy expenditure, pancreatic function, and neurotransmitter release in control, obese and/or diabetic conditions. Moreover, dietary supplementation of natural ligands of TRP channels has been shown to have potential beneficial effects in obese and diabetic conditions. These findings raised the interest and likelihood for potential drug development. In this mini-review, we discuss possibilities for better management of obesity and diabetes mellitus based on TRP-dependent mechanisms.

18.
Brain Res ; 1017(1-2): 208-17, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15261116

RESUMO

The nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus nerve (DMV) constitute sensory and motor nuclei of the dorsal vagal complex, respectively. We used whole-cell patch-clamp recordings from DMV neurons in rat brain slices and three methods of stimulation (electrical, glutamate microdrop, glutamate photostimulation) to test the hypothesis that convergent excitatory and inhibitory inputs to DMV neurons originate from intact neurons in multiple NTS areas. Electrical stimulation of the NTS resulted in evoked excitatory and inhibitory postsynaptic currents (eEPSCs and eIPSCs) in DMV neurons. Stimulation of the dorsal NTS with glutamate microdrops, which selectively stimulates the soma and dendrites of intact neurons, resulted in 31% of DMV neurons receiving eEPSCs, 44% receiving eIPSCs, and 6% receiving convergent excitatory and inhibitory inputs. Glutamate photostimulation allowed selective activation of intact neurons in multiple, discrete areas of the NTS and resulted in 36% of DMV neurons receiving eEPSCs, 65% receiving eIPSCs and 20% receiving both inputs. Data obtained by stimulation of multiple NTS areas support the hypothesis that there are anatomically convergent inputs to DMV neurons originating from intact neurons within the NTS. These data support the hypothesis that there is transfer of convergent information from the NTS to the DMV, implying that significant sensory-motor processing occurs within the brainstem.


Assuntos
Neurônios Motores/fisiologia , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Núcleo Solitário/fisiologia , Nervo Vago/fisiologia , Animais , Animais Recém-Nascidos , Mapeamento Encefálico , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Glutamatos/farmacologia , Ácido Glutâmico/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/efeitos da radiação , Inibição Neural/efeitos dos fármacos , Inibição Neural/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Fotólise , Ratos , Ratos Sprague-Dawley
19.
Mol Metab ; 3(7): 681-93, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25352997

RESUMO

OBJECTIVE: Leptin responsive neurons play an important role in energy homeostasis, controlling specific autonomic, behavioral, and neuroendocrine functions. We have previously identified a population of leptin receptor (LepRb) expressing neurons within the dorsomedial hypothalamus/dorsal hypothalamic area (DMH/DHA) which are related to neuronal circuits that control brown adipose tissue (BAT) thermogenesis. Intra-DMH leptin injections also activate sympathetic outflow to BAT, but whether such effects are mediated directly via DMH/DHA LepRb neurons and whether this is physiologically relevant for whole body energy expenditure and body weight regulation has yet to be determined. METHODS: We used pharmacosynthetic receptors (DREADDs) to selectively activate DMH/DHA LepRb neurons. We further deleted LepRb with virally driven cre-recombinase from DMH/DHA neurons and determined the physiological importance of DMH/DHA LepRb neurons in whole body energy homeostasis. RESULTS: Neuronal activation of DMH/DHA LepRb neurons with DREADDs promoted BAT thermogenesis and locomotor activity, which robustly induced energy expenditure (p < 0.001) and decreases body weight (p < 0.001). Similarly, intra-DMH/DHA leptin injections normalized hypothermia and attenuated body weight gain in leptin-deficient ob/ob mice. Conversely, ablation of LepRb from DMH/DHA neurons remarkably drives weight gain (p < 0.001) by reducing energy expenditure (p < 0.001) and locomotor activity (p < 0.001). The observed changes in body weight were largely independent of food intake. CONCLUSION: Taken together, our data highlight that DMH/DHA LepRb neurons are sufficient and necessary to regulate energy expenditure and body weight.

20.
Physiol Rep ; 2(9)2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25263209

RESUMO

The central nervous system plays a critical role in the regulation of feeding behavior and whole-body metabolism via controlling the autonomic output to the visceral organs. Activity of the parasympathetic neurons in the dorsal motor nucleus of the vagus (DMV) determines the vagal tone and thereby modulates the function of the subdiaphragmatic organs. Leptin is highly involved in the regulation of food intake and alters neuronal excitability of brainstem neurons. Transient receptor potential vanilloid type 1 (TRPV1) has also been shown to increase neurotransmission in the brainstem and we tested the hypothesis that TRPV1 regulates presynaptic neurotransmitter release to leptin receptor-expressing (LepRb(EGFP)) DMV neurons. Whole-cell patch-clamp recordings were performed to determine the effect of TRPV1 activation on excitatory and inhibitory postsynaptic currents (EPSC, IPSC) of LepRb(EGFP) neurons in the DMV. Capsaicin, a TRPV1 agonist increased the frequency of miniature EPSCs in 50% of LepRb(EGFP) neurons without altering the frequency of miniature IPSCs in the DMV. Stomach-projecting LepRb(EGFP) neurons were identified in the DMV using the transsynaptic retrograde viral tracer PRV-614. Activation of TRPV1 increased the frequency of mEPSC in ~50% of stomach-related LepRb(EGFP) DMV neurons. These data demonstrate that TRPV1 increases excitatory neurotransmission to a subpopulation of LepRb(EGFP) DMV neurons via presynaptic mechanisms and suggest a potential interaction between TRPV1 and leptin signaling in the DMV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA