RESUMO
The clinical assessment of patients with disorders of consciousness (DoC) relies on the observation of behavioural responses to standardised sensory stimulation. However, several medical comorbidities may directly impair the production of reproducible and appropriate responses, thus reducing the sensitivity of behaviour-based diagnoses. One such comorbidity is akinetic mutism (AM), a rare neurological syndrome characterised by the inability to initiate volitional motor responses, sometimes associated with clinical presentations that overlap with those of DoC. In this paper, we describe the case of a patient with large bilateral mesial frontal lesions, showing prolonged behavioural unresponsiveness and severe disorganisation of electroencephalographic (EEG) background, compatible with a vegetative state/unresponsive wakefulness syndrome (VS/UWS). By applying an unprecedented multimodal battery of advanced imaging and electrophysiology-based techniques (AIE) encompassing spontaneous EEG, evoked potentials, event-related potentials, transcranial magnetic stimulation combined with EEG and structural and functional MRI, we provide the following: (i) a demonstration of the preservation of consciousness despite unresponsiveness in the context of AM, (ii) a plausible neurophysiological explanation for behavioural unresponsiveness and its subsequent recovery during rehabilitation stay and (iii) novel insights into the relationships between DoC, AM and parkinsonism. The present case offers proof-of-principle evidence supporting the clinical utility of a multimodal hierarchical workflow that combines AIEs to detect covert signs of consciousness in unresponsive patients.
Assuntos
Afasia Acinética , Terapia por Estimulação Elétrica , Humanos , Afasia Acinética/diagnóstico , Inconsciência , Estado de Consciência , EletroencefalografiaRESUMO
The analysis of spontaneous electroencephalogram (EEG) is a cornerstone in the assessment of patients with disorders of consciousness (DoC). Although preserved EEG patterns are highly suggestive of consciousness even in unresponsive patients, moderately or severely abnormal patterns are difficult to interpret. Indeed, growing evidence shows that consciousness can be present despite either large delta or reduced alpha activity in spontaneous EEG. Quantifying the complexity of EEG responses to direct cortical perturbations (perturbational complexity index [PCI]) may complement the observational approach and provide a reliable assessment of consciousness even when spontaneous EEG features are inconclusive. To seek empirical evidence of this hypothesis, we compared PCI with EEG spectral measures in the same population of minimally conscious state (MCS) patients (n = 40) hospitalized in rehabilitation facilities. We found a remarkable variability in spontaneous EEG features across MCS patients as compared with healthy controls: in particular, a pattern of predominant delta and highly reduced alpha power-more often observed in vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients-was found in a non-negligible number of MCS patients. Conversely, PCI values invariably fell above an externally validated empirical cutoff for consciousness in all MCS patients, consistent with the presence of clearly discernible, albeit fleeting, behavioural signs of awareness. These results confirm that, in some MCS patients, spontaneous EEG rhythms may be inconclusive about the actual capacity for consciousness and suggest that a perturbational approach can effectively compensate for this pitfall with practical implications for the individual patient's stratification and tailored rehabilitation.
Assuntos
Eletroencefalografia , Estado Vegetativo Persistente , Humanos , Estado Vegetativo Persistente/diagnóstico , Eletroencefalografia/métodos , Estado de Consciência , Vigília/fisiologia , Transtornos da Consciência/diagnósticoRESUMO
Neurophysiological markers can overcome the limitations of behavioural assessments of Disorders of Consciousness (DoC). EEG alpha power emerged as a promising marker for DoC, although long-standing literature reported alpha power being sustained during anesthetic-induced unconsciousness, and reduced during dreaming and hallucinations. We hypothesized that EEG power suppression caused by severe anoxia could explain this conflict. Accordingly, we split DoC patients (n = 87) in postanoxic and non-postanoxic cohorts. Alpha power was suppressed only in severe postanoxia but failed to discriminate un/consciousness in other aetiologies. Furthermore, it did not generalize to an independent reference dataset (n = 65) of neurotypical, neurological, and anesthesia conditions. We then investigated EEG spatio-spectral gradients, reflecting anteriorization and slowing, as alternative markers. In non-postanoxic DoC, these features, combined in a bivariate model, reliably stratified patients and indexed consciousness, even in unresponsive patients identified as conscious by an independent neural marker (the Perturbational Complexity Index). Crucially, this model optimally generalized to the reference dataset. Overall, alpha power does not index consciousness; rather, its suppression entails diffuse cortical damage, in postanoxic patients. As an alternative, EEG spatio-spectral gradients, reflecting distinct pathophysiological mechanisms, jointly provide a robust, parsimonious, and generalizable marker of consciousness, whose clinical application may guide rehabilitation efforts.
Assuntos
Anestesia , Estado de Consciência , Humanos , Estado de Consciência/fisiologia , Transtornos da Consciência , Eletroencefalografia , Inconsciência/induzido quimicamenteRESUMO
Complexity analysis of electroencephalogram (EEG) signals has emerged as a valuable tool for characterizing Parkinson's disease (PD). Fractal dimension (FD) is a widely employed method for measuring the complexity of shapes with many applications in neurodegenerative disorders. Nevertheless, very little is known on the fractal characteristics of EEG in PD measured by FD. In this study we performed a spatio-temporal analysis of EEG in PD using FD in four dimensions (4DFD). We analyzed 42 resting-state EEG recordings comprising two groups: 27 PD patients without dementia and 15 healthy control subjects (HC). From the original resting-state EEG we derived the cortical activations defined by a source reconstruction at each time sample, generating point clouds in three dimensions. Then, a sliding window of one second (the fourth dimension) was used to compute the value of 4DFD by means of the box-counting algorithm. Our results showed a significantly higher value of 4DFD in the PD group (p < 0.001). Moreover, as a diagnostic classifier of PD, 4DFD obtained an area under curve value of 0.97 for a receiver operating characteristic curve analysis. These results suggest that 4DFD could be a promising method for characterizing the specific changes in the brain dynamics associated with PD.
RESUMO
OBJECTIVE: The objective of this study was to test the superiority of multidisciplinary approach, that is, Short-Term Psychodynamic Psychotherapy (STPP) plus drug of choice, versus monotherapy, that is, OnabotulinumtoxinA (OnaBoNT-A). METHOD: We consecutively recorded data from chronic migraine (CM) patients, with or without medication overuse headache (MOH), who underwent STPP or OnaBoNT-A, with a 3-month follow-up schedule. Headache days and analgesics intake were monitored as primary outcome measures. Propensity score matching (PSM) was used to eliminate discrepancies between groups. Discriminant function analysis (DFA) was used to pinpoint predictive factors associated with the clinical response. RESULTS: 96 patients with CM (64% with MOH) were treated with STPP and 54 (59% with MOH) with OnaBoNT-A. At baseline, OnaBoNT-A patients had more failed preventive therapies, more years of illness and chronicity, and were older; STPP patients were more depressed and had a higher HIT-6. Both STPP and OnaBoNT-A patients showed a significant reduction of headache days (STPP: -14 vs. OnaBoNT-A:-14.3) and analgesics intake (STPP: -12,3 vs. OnaBoNT-A -13.5 pills/month), respectively. MOH diminished more in STPP, adherence was higher in OnaBoNT-A. Results were confirmed after PSM balancing of the groups for those variables that resulted as different (but age). CONCLUSION: OnaBoNT-A monotherapy produced similar results to psychotherapy plus medication, after correcting for baseline differences.
Assuntos
Toxinas Botulínicas Tipo A , Transtornos da Cefaleia Secundários , Transtornos de Enxaqueca , Psicoterapia Psicodinâmica , Humanos , Toxinas Botulínicas Tipo A/uso terapêutico , Pontuação de Propensão , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos da Cefaleia Secundários/tratamento farmacológico , Cefaleia , Analgésicos/uso terapêuticoRESUMO
OBJECTIVE: The objective of this study was to produce a cross-cultural adaptation in Italian of the Agitated Behavior Scale (ABS), originally developed in English, as the first of two stages that also include cross-cultural validation and allow a clinical scale to be used in the proper setting such as rehabilitation units. METHODS: In order to adapt the ABS scale to a different cultural environment, five consecutive steps were performed: (1) forward translations (n = 8), (2) synthesis of the 8 forward translations to obtain a first shared italian version (ABS_I_trial), (3) back translations (n = 3), (4) creation of an expert committee to evaluate forward and back translations and finally (5) the cognitive debriefing. RESULTS: After the five steps, including forward translations and back translations, the process of committee verification and judgement and the evaluative step of cognitive debriefing, high comprehensibility of all items was found, resulting in an Italian translation version of ABS suitable for application in a clinical setting. CONCLUSION: ABS translation was produced by means of a standardized procedure aimed at minimizing cross-cultural gaps. The expert committee evaluated the version produced as highly understandable in Italian. Further steps, such as the subsequent validation of its psychometric properties, are needed to employ this translation in a clinical setting.
Assuntos
Projetos de Pesquisa , Traduções , Humanos , Comparação Transcultural , Itália , Psicometria , Reprodutibilidade dos Testes , Inquéritos e QuestionáriosRESUMO
Disturbances of conscious awareness, or self-disorders, are a defining feature of schizophrenia. These include symptoms such as delusions of control, i.e. the belief that one's actions are controlled by an external agent. Models of self-disorders point at altered neural mechanisms of source monitoring, i.e. the ability of the brain to discriminate self-generated stimuli from those driven by the environment. However, evidence supporting this putative relationship is currently lacking. We performed electroencephalography (EEG) during self-paced, brisk right fist closures in ten (M = 9; F = 1) patients with Early-Course Schizophrenia (ECSCZ) and age and gender-matched healthy volunteers. We measured the Readiness Potential (RP), i.e. an EEG feature preceding self-generated movements, and movement-related EEG spectral changes. Self-disorders in ECSCZ were assessed with the Examination of Anomalous Self-Experience (EASE). Patients showed a markedly reduced RP and altered post-movement Event-Related Synchronization (ERS) in the beta frequency band (14-24 Hz) compared to healthy controls. Importantly, smaller RP and weaker ERS were associated with higher EASE scores in ECSCZ. Our data suggest that disturbances of neural correlates preceding and following self-initiated movements may reflect the severity of self-disorders in patients suffering from ECSCZ. These findings point towards deficits in basic mechanisms of sensorimotor integration as a substrate for self-disorders.
Assuntos
Esquizofrenia/diagnóstico , Psicologia do Esquizofrênico , Potenciais de Ação , Adulto , Encéfalo/fisiopatologia , Eletroencefalografia , Feminino , Humanos , Masculino , Esquizofrenia/terapia , Índice de Gravidade de Doença , Avaliação de Sintomas , Adulto JovemRESUMO
Transcranial magnetic stimulation (TMS) of the primary motor cortex (M1) can excite both cortico-cortical and cortico-spinal axons resulting in TMS-evoked potentials (TEPs) and motor-evoked potentials (MEPs), respectively. Despite this remarkable difference with other cortical areas, the influence of motor output and its amplitude on TEPs is largely unknown. Here we studied TEPs resulting from M1 stimulation and assessed whether their waveform and spectral features depend on the MEP amplitude. To this aim, we performed two separate experiments. In experiment 1, single-pulse TMS was applied at the same supra-threshold intensity on primary motor, prefrontal, premotor and parietal cortices and the corresponding TEPs were compared by means of local mean field power and time-frequency spectral analysis. In experiment 2 we stimulated M1 at resting motor threshold in order to elicit MEPs characterized by a wide range of amplitudes. TEPs computed from high-MEP and low-MEP trials were then compared using the same methods applied in experiment 1. In line with previous studies, TMS of M1 produced larger TEPs compared to other cortical stimulations. Notably, we found that only TEPs produced by M1 stimulation were accompanied by a late event-related desynchronization (ERD-peaking at ~300 ms after TMS), whose magnitude was strongly dependent on the amplitude of MEPs. Overall, these results suggest that M1 produces peculiar responses to TMS possibly reflecting specific anatomo-functional properties, such as the re-entry of proprioceptive feedback associated with target muscle activation.