Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharm ; 21(4): 1591-1608, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38396330

RESUMO

The perpetuity of cancer prevalence at a global level calls for development of novel therapeutic approaches with improved targetability and reduced adverse effects. Conventional cancer treatments have a multitude of limitations such as nonselectivity, invasive nature, and severe adverse effects. Chemotherapy is also losing its efficacy because of the development of multidrug resistance in the majority of cancers. To address these issues, selective targeting-based approaches are being explored for an effective cancer treatment. Mitochondria, being the moderator of a majority of crucial cellular pathways like metabolism, apoptosis, and reactive oxygen species (ROS) homeostasis, are an effective targeting site. Mitochondria-targeted photodynamic therapy (PDT) has arisen as a potential approach in this endeavor. By designing photosensitizers (PSs) that preferentially accumulate in the mitochondria, PDT offers a localized technique to induce cytotoxicity in cancer cells. In this review, we intend to explore the crucial principles and challenges associated with mitochondria-targeted PDT, including variability in mitochondrial function, mitochondria-specific PSs, targeted nanocarrier-based monotherapy, and combination therapies. The hurdles faced by this emerging strategy with respect to safety, optimization, clinical translation, and scalability are also discussed. Nonetheless, mitochondria-targeted PDT exhibits a significant capacity in cancer treatment, especially in combination with other therapeutic modalities. With perpetual research and technological advancements, this treatment strategy is a great addition to the arsenal of cancer treatment options, providing better tumor targetability while reducing the damage to surrounding healthy tissues. This review emphasizes the current status of mitochondria-targeted PDT, limitations, and future prospects in its pursuit of safe and efficacious cancer therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Apoptose , Mitocôndrias , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
2.
Int J Biol Macromol ; 271(Pt 1): 132586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38795889

RESUMO

Rheumatoid Arthritis (RA) is a chronic, inflammatory, auto-immune disease that is majorly associated with the degradation of the synovial linings of the joints. It is a progressive disease that reduces the life span in affected individuals. Nanoparticles involving hyaluronic acid (HA) have gained the limelight for designing target-specific and more effective drug delivery options for RA. HA is found abundantly in the synovial fluid and acts as a natural ligand for the CD44 receptors. The targeted delivery approach using CD44 as the target can help in minimizing off-target drug distribution. These HA-based surface-decorated nanocarriers, hydrogels, and MNs are cutting-edge strategies that promise tailored delivery, fewer side effects, and more patient adherence to address the common issues associated with RA therapy. Considering the above facts, this review attempts to discuss the role of HA in making more effective formulations for therapeutic delivery in treating RA. Additionally, it provides a comprehensive overview of the potential advancements, mainly in treating RA by HA-based topical, transdermal, and parenteral drug delivery systems, with relevant case studies. The existing difficulties and potential paths for future research on HA-based non-conventional formulations for the management of RA are also discussed.


Assuntos
Artrite Reumatoide , Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Ácido Hialurônico/química , Artrite Reumatoide/tratamento farmacológico , Humanos , Sistemas de Liberação de Medicamentos/métodos , Animais , Portadores de Fármacos/química , Nanopartículas/química , Antirreumáticos/administração & dosagem , Antirreumáticos/uso terapêutico , Antirreumáticos/farmacocinética , Antirreumáticos/química , Receptores de Hialuronatos/metabolismo
3.
Carbohydr Polym ; 327: 121655, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171676

RESUMO

Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.


Assuntos
Adesivos , Polissacarídeos , Polissacarídeos/química , Cicatrização , Bandagens , Alginatos/química , Antibacterianos/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-39136542

RESUMO

INTRODUCTION: Skin carcinoma, including malignant melanoma, basal, squamous, and Merkel cell carcinoma, present significant healthcare challenges. Conventional treatments like surgery and chemotherapy suffer from limitations like non-specificity, toxicity, and adverse effects. The upcoming treatments are dominated by nano-sized delivery systems, which improve treatment outcomes while minimizing side effects. Moving ahead, targeted nanoparticles allow localized delivery of drugs at tumor site, ensuring minimal damage to surrounding tissues. AREAS COVERED: This review explores various targeting strategies for specific types of skin cancers. The strategies discussed include nanocarrier-mediated targeted delivery with multiple types of ligands like aptamers, antibodies, peptides, and vitamins and their advantages in skin cancer. Upcoming cutting-edge technologies such as smart delivery systems, microneedle-assisted delivery and three-dimensional printed scaffolds have also been discussed in detail. The findings in this review are summarized from databases like PubMed, Scopus, Web of Science, ClinicalTrials.gov, NIH, and articles published between 2005 and 2024 that discuss targeted therapy for skin cancer. EXPERT OPINION: Specific cancer-targeting strategies promise personalized treatments, improving response rates and reducing need for intensive therapies. The review highlights various challenges, their solution, and economic aspects in this dynamic field. It further emphasizes the potential for specialized strategies to revolutionize skin cancer treatment.

5.
RSC Adv ; 14(30): 21915-21937, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38989245

RESUMO

Skin carcinoma is one of the most prevalent types of carcinomas. Due to high incidence of side effects in conventional therapies (radiotherapy and chemotherapy), photodynamic therapy (PDT) has gained huge attention as an alternate treatment strategy. PDT involves the administration of photosensitizers (PS) to carcinoma cells which produce reactive oxygen species (ROS) on irradiation by specific wavelengths of light that result in cancer cells' death via apoptosis, autophagy, or necrosis. Topical delivery of PS to the skin cancer cells at the required concentration is a challenge due to the compounds' innate physicochemical characteristics. Nanocarriers have been observed to improve skin permeability and enhance the therapeutic efficiency of PDT. Polymeric nanoparticles (NPs), metallic NPs, and lipid nanocarriers have been reported to carry PS successfully with minimal side effects and high effectiveness in both melanoma and non-melanoma skin cancers. Advanced carriers such as quantum dots, microneedles, and cubosomes have also been addressed with reported studies to show their scope of use in PDT-assisted skin cancer treatment. In this review, nanocarrier-aided PDT in skin cancer therapies has been discussed with clinical trials and patents. Additionally, novel nanocarriers that are being investigated in PDT are also covered with their future prospects in skin carcinoma treatment.

6.
ACS Omega ; 8(1): 74-86, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643539

RESUMO

Nanocarriers have the utmost significance for advancements in drug delivery and nanomedicine technology. They are classified as polymer-based nanocarriers, lipid-based nanocarriers, viral nanoparticles, or inorganic nanoparticles, depending on their constituent parts. Lipid-based nanocarrier systems have gained tremendous attention over the years because of their noteworthy properties like high drug-loading capacity, lower toxicity, better bioavailability and biocompatibility, stability in the gastrointestinal tract, controlled release, simpler scale-up, and validation process. Nanocarriers still have some disadvantages like poor drug penetration, limited drug encapsulation, and poor targeting. These disadvantages can be overcome by their surface modification. Surface-modified nanocarriers result in controlled release, enhanced penetration efficiency, and targeted medication delivery. In this review, the authors summarize the numerous lipid-based nanocarriers and their functionalization through various surface modifiers such as polymers, ligands, surfactants, and fatty acids. Recent examples of newly developing surface-modified lipid-based nanocarrier systems from the available literature, along with their applications, have been compiled in this work.

7.
Expert Opin Drug Deliv ; 20(6): 721-738, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36893450

RESUMO

INTRODUCTION: For decades, finding effective long-term or disease-modifying treatments for skin disorders has been a major focus of scientists. The conventional drug delivery systems showed poor efficacy with high doses and are associated with side effects, which lead to challenges in adherence to therapy. Therefore, to overcome the limitations of conventional drug delivery systems, drug delivery research has focused on topical, transdermal, and intradermal drug delivery systems. Among all, the dissolving microneedles have gained attention with a new range of advantages of drug delivery in skin disorders such as breaching skin barriers with minimal discomfort and its simplicity of application to the skin, which allows patients to administer it themselves. AREAS COVERED: This review highlighted the insights into dissolving microneedles for different skin disorders in detail. Additionally, it also provides evidence for its effective utilization in the treatment of various skin disorders. The clinical trial status and patents for dissolving microneedles for the management of skin disorders are also covered. EXPERT OPINION: The current review on dissolving microneedles for skin drug delivery is accentuating the breakthroughs achieved so far in the management of skin disorders. The output of the discussed case studies anticipated that dissolving microneedles can be a novel drug delivery strategy for the long-term treatment of skin disorders.


Assuntos
Agulhas , Dermatopatias , Humanos , Microinjeções , Pele , Administração Cutânea , Sistemas de Liberação de Medicamentos , Dermatopatias/tratamento farmacológico
8.
Pharmaceutics ; 15(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36678643

RESUMO

The tumor is an uncontrolled growth of tissue that can be localized (benign) or possesses the capability of metastasis (malignant). The conventional methods of tumor diagnosis, such as acupuncture, endoscopy, and histopathology, and treatment methods, such as injections, chemotherapy, surgery, and radiotherapy, are invasive, expensive, and pose severe safety and management issues for the patients. Microneedle technology is a recently developed approach for active transdermal drug delivery. It is minimally invasive, self-administrable, bypasses the first-pass effect, and effectively delivers chemotherapeutics and drugs at low doses, thus, overcoming the drawbacks of conventional delivery systems. This review provides an idea of the types, materials utilized in the fabrication, and techniques used for the preparation of microneedles (MNs), as well as their application in tumor diagnosis and treatment. Additionally, emphasis is given to the case studies related to MNs-assisted tumor therapy, such as photothermal therapy, gene therapy, photodynamic therapy, chemotherapy, immunotherapy, and various combination therapies. MNs also serve as a tool for diagnosis by the bio-sampling of blood and interstitial skin fluid, as well as biosensing various cancer biomarkers. The combined therapy and diagnostics provide theranostic MNs for enhanced and personalized tumor therapy. The limitations and prospects of MNs development are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA