Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 174(4): 884-896.e17, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30057119

RESUMO

Clathrin-mediated endocytosis is an essential cellular function in all eukaryotes that is driven by a self-assembled macromolecular machine of over 50 different proteins in tens to hundreds of copies. How these proteins are organized to produce endocytic vesicles with high precision and efficiency is not understood. Here, we developed high-throughput superresolution microscopy to reconstruct the nanoscale structural organization of 23 endocytic proteins from over 100,000 endocytic sites in yeast. We found that proteins assemble by radially ordered recruitment according to function. WASP family proteins form a circular nanoscale template on the membrane to spatially control actin nucleation during vesicle formation. Mathematical modeling of actin polymerization showed that this WASP nano-template optimizes force generation for membrane invagination and substantially increases the efficiency of endocytosis. Such nanoscale pre-patterning of actin nucleation may represent a general design principle for directional force generation in membrane remodeling processes such as during cell migration and division.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Endocitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vesículas Secretórias/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/química , Membrana Celular/metabolismo , Microscopia de Fluorescência , Modelos Teóricos , Conformação Proteica , Família de Proteínas da Síndrome de Wiskott-Aldrich/química
2.
Nat Methods ; 17(9): 909-912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32807954

RESUMO

High laser powers are common practice in single-molecule localization microscopy to speed up data acquisition. Here we systematically quantified how excitation intensity influences localization precision and labeling density, the two main factors determining data quality. We found a strong trade-off between imaging speed and quality and present optimized imaging protocols for high-throughput, multicolor and three-dimensional single-molecule localization microscopy with greatly improved resolution and effective labeling efficiency.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Individual de Molécula/métodos , Carbocianinas , Linhagem Celular Tumoral , Humanos , Fatores de Tempo
4.
Nat Methods ; 15(5): 367-369, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29630062

RESUMO

We present a real-time fitter for 3D single-molecule localization microscopy using experimental point spread functions (PSFs) that achieves minimal uncertainty in 3D on any microscope and is compatible with any PSF engineering approach. We used this method to image cellular structures and attained unprecedented image quality for astigmatic PSFs. The fitter compensates for most optical aberrations and makes accurate 3D super-resolution microscopy broadly accessible, even on standard microscopes without dedicated 3D optics.


Assuntos
Imageamento Tridimensional/métodos , Imagem Individual de Molécula/métodos , Animais , Linhagem Celular , Óptica e Fotônica , Coloração e Rotulagem
5.
BMC Bioinformatics ; 21(1): 456, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059591

RESUMO

BACKGROUND: Advanced light microscopy methods are key to many biological studies. Their ease of use depends, besides experimental aspects, on intuitive graphical user interfaces (GUI). The open-source software Micro-Manager offers a universal GUI for microscope control but requires implementing plugins to further tailor it to specific systems. However, GUIs are often tailored to a single system. Since even similar devices can have different Micro-Manager device properties, such as power percentage versus absolute power, directly transferring a GUI to another instrument usually requires changing the source-code. RESULTS: We developed Easier Micro-Manager User interface (EMU), a Micro-Manager plugin, to simplify building flexible and reconfigurable GUIs. EMU can be seamlessly used with the Java Swing library to create device-independent GUIs for Micro-Manager. Such GUIs are easily transferred to another microscope thanks to an intuitive configuration menu that includes mapping of the device properties to the GUI functionalities and customization of the graphical elements. We also provide resources such as user and programming guides, a tutorial and code examples. CONCLUSIONS: Micro-Manager users now have a powerful tool to improve the user experience on their instruments. EMU GUIs can be easily configured for new microscopes and shared with other research groups. In the future, newly developed GUIs will be added to EMU to benefit the whole community.


Assuntos
Software , Interface Usuário-Computador , Microscopia
6.
Opt Express ; 24(24): 28080-28090, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906373

RESUMO

Single-molecule localization microscopy (SMLM) relies on the switching of fluorescent molecules between a fluorescent and a dark state to achieve super resolution. This process is inherently dependent on the intensity distribution of the laser light used for both activation from the dark state and excitation of the bright state. Typically, laser light is coupled directly or via a single-mode fiber into the microscope, which leads to a Gaussian intensity profile in total internal reflection (TIR) or epi illumination. As a result, switching dynamics and brightness of the fluorescent molecules vary strongly across the field of view, impacting their localization precision and impeding quantitative analysis. Here we present a simple illumination scheme based on the use of a multimode fiber and a laser speckle-reducer, which results in a flat, homogeneous and speckle-free illumination across the entire field of view. In addition, we combined homogeneous multimode excitation of the sample with single-mode based TIR activation to simultaneously obtain the advantages of both approaches: uniform brightness of single fluorophores and TIR-like optical sectioning.

7.
Opt Express ; 22(23): 29081-91, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402146

RESUMO

We present a fundamentally new approach to 3D superresolution microscopy based on the principle of surface-generated fluorescence. This near-field fluorescence is strongly dependent on the distance of fluorophores from the coverslip and can therefore be used to estimate their axial positions. We established a robust and simple implementation of supercritical angle fluorescence detection for single-molecule localization microscopy, calibrated it using fluorescent bead samples, validated the method with DNA origami tetrahedra, and present proof-of-principle data on biological samples.


Assuntos
Corantes Fluorescentes/análise , Imageamento Tridimensional , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Fluorescência
8.
HardwareX ; 13: e00407, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36875260

RESUMO

Modern microscopy relies increasingly on microscope automation to improve throughput, ensure reproducibility or observe rare events. Automation requires computer control of the important elements of the microscope. Furthermore, optical elements that are usually fixed or manually movable can be placed on electronically-controllable elements. In most cases, a central electronics board is necessary to generate the control signals they require and to communicate with the computer. For such tasks, Arduino microcontrollers are widely used due to their low cost and programming entry barrier. However, they are limiting in their performance for applications that require high-speed or multiple parallel processes. Field programmable gate arrays (FPGA) are the perfect technology for high-speed microscope control, as they are capable of processing signals in parallel and with high temporal precision. While plummeting prices made the technology available to consumers, a major hurdle remaining is the complex languages used to configure them. In this work, we used an affordable FPGA, delivered with an open-source and friendly-to-use programming language, to create a versatile microscope control platform called MicroFPGA. It is capable of synchronously triggering cameras and multiple lasers following complex patterns, as well as generating various signals used to control microscope elements such as filter wheels, servomotor stages, flip-mirrors, laser power or acousto-optic modulators. MicroFPGA is open-source and we provide online Micro-Manager, Java, Python and LabVIEW libraries, together with blueprints and tutorials.

9.
Nat Commun ; 13(1): 3362, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690614

RESUMO

Modern implementations of widefield fluorescence microscopy often rely on sCMOS cameras, but this camera architecture inherently features pixel-to-pixel variations. Such variations lead to image artifacts and render quantitative image interpretation difficult. Although a variety of algorithmic corrections exists, they require a thorough characterization of the camera, which typically is not easy to access or perform. Here, we developed a fully automated pipeline for camera characterization based solely on thermally generated signal, and implemented it in the popular open-source software Micro-Manager and ImageJ/Fiji. Besides supplying the conventional camera maps of noise, offset and gain, our pipeline also gives access to dark current and thermal noise as functions of the exposure time. This allowed us to avoid structural bias in single-molecule localization microscopy (SMLM), which without correction is substantial even for scientific-grade, cooled cameras. In addition, our approach enables high-quality 3D super-resolution as well as live-cell time-lapse microscopy with cheap, industry-grade cameras. As our approach for camera characterization does not require any user interventions or additional hardware implementations, numerous correction algorithms that rely on camera characterization become easily applicable.


Assuntos
Algoritmos , Artefatos , Microscopia de Fluorescência/métodos , Fótons , Imagem Individual de Molécula
10.
Nat Commun ; 12(1): 1180, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608524

RESUMO

3D single molecule localization microscopy (SMLM) is an emerging superresolution method for structural cell biology, as it allows probing precise positions of proteins in cellular structures. In supercritical angle localization microscopy (SALM), z-positions of single fluorophores are extracted from the intensity of supercritical angle fluorescence, which strongly depends on their distance to the coverslip. Here, we realize the full potential of SALM and improve its z-resolution by more than four-fold compared to the state-of-the-art by directly splitting supercritical and undercritical emission, using an ultra-high NA objective, and applying fitting routines to extract precise intensities of single emitters. We demonstrate nanometer isotropic localization precision on DNA origami structures, and on clathrin coated vesicles and microtubules in cells, illustrating the potential of SALM for cell biology.


Assuntos
Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Conformação Molecular , Imagem Individual de Molécula/instrumentação , Imagem Individual de Molécula/métodos , Vesículas Revestidas por Clatrina/ultraestrutura , DNA/ultraestrutura , Fluorescência , Corantes Fluorescentes/química , Microtúbulos/ultraestrutura , Modelos Biológicos
11.
Biomed Opt Express ; 11(2): 609-623, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32206389

RESUMO

Scientific-grade lasers are costly components of modern microscopes. For high-power applications, such as single-molecule localization microscopy, their price can become prohibitive. Here, we present an open-source high-power laser engine that can be built for a fraction of the cost. It uses affordable, yet powerful laser diodes at wavelengths of 405 nm, 488 nm and 638 nm and optionally a 561 nm diode-pumped solid-state laser. The light is delivered to the microscope via an agitated multimode fiber in order to suppress speckles. We provide the parts list, CAD files and detailed descriptions, allowing any research group to build their own laser engine.

13.
Open Biol ; 8(10)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381362

RESUMO

Chemical detection is key to various behaviours in both marine and terrestrial animals. Marine species, though highly diverse, have been underrepresented so far in studies on chemosensory systems, and our knowledge mostly concerns the detection of airborne cues. A broader comparative approach is therefore desirable. Marine annelid worms with their rich behavioural repertoire represent attractive models for chemosensation. Here, we study the marine worm Platynereis dumerilii to provide the first comprehensive investigation of head chemosensory organ physiology in an annelid. By combining microfluidics and calcium imaging, we record neuronal activity in the entire head of early juveniles upon chemical stimulation. We find that Platynereis uses four types of organs to detect stimuli such as alcohols, esters, amino acids and sugars. Antennae are the main chemosensory organs, compared to the more differentially responding nuchal organs or palps. We report chemically evoked activity in possible downstream brain regions including the mushroom bodies (MBs), which are anatomically and molecularly similar to insect MBs. We conclude that chemosensation is a major sensory modality for marine annelids and propose early Platynereis juveniles as a model to study annelid chemosensory systems.


Assuntos
Anelídeos/fisiologia , Cabeça/fisiologia , Gravação em Vídeo , 1-Butanol/farmacologia , Animais , Cálcio/metabolismo , Ácido Glutâmico/farmacologia , Microfluídica , Modelos Animais , Corpos Pedunculados/efeitos dos fármacos , Corpos Pedunculados/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pentanóis/farmacologia , Sacarose/farmacologia
14.
Nat Commun ; 6: 7525, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109233

RESUMO

Matrix rigidity sensing regulates a large variety of cellular processes and has important implications for tissue development and disease. However, how cells probe matrix rigidity, and hence respond to it, remains unclear. Here, we show that rigidity sensing and adaptation emerge naturally from actin cytoskeleton remodelling. Our in vitro experiments and theoretical modelling demonstrate a biphasic rheology of the actin cytoskeleton, which transitions from fluid on soft substrates to solid on stiffer ones. Furthermore, we find that increasing substrate stiffness correlates with the emergence of an orientational order in actin stress fibres, which exhibit an isotropic to nematic transition that we characterize quantitatively in the framework of active matter theory. These findings imply mechanisms mediated by a large-scale reinforcement of actin structures under stress, which could be the mechanical drivers of substrate stiffness-dependent cell shape changes and cell polarity.


Assuntos
Actinas/fisiologia , Citoesqueleto/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Biomecânicos , Células Alimentadoras , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Força Atômica , Modelos Biológicos , Ratos , Reologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA