Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193389

RESUMO

Trypanosoma cruzi, the etiological agent of Chagas disease is a protozoan parasite that infects phagocytic and non-phagocytic mammalian cells. At early stages of infection, trypomastigotes, the infective forms of this parasite, localize in a vesicular compartment called the T. cruzi parasitophorous vacuole until the exit of parasites to the host cell cytoplasm where continue their infective cycle. Rab proteins participate in the membrane traffic's molecular machinery, functioning as central regulators of vesicle recognition and transport. In previous work, we demonstrated that endocytic Rabs are key factors of the T. cruzi infection process in non-phagocytic cells, regulating the formation and the maturation of the vacuole. In this work, we identified and characterized other molecular components of the vesicular transport pathways and their participation in the T. cruzi infection. We found that Rab9a and Rab32, two regulators of the endocytic and autophagic pathways, were actively recruited to the T. cruzi vacuoles and favored the late stages of the infective process. The recruitment was specific and dependent on T. cruzi protein synthesis. Interestingly, Rab32 association depends on the presence of Rab9a in the vacuolar membrane, while the inhibition of the cysteine-protease cruzipain, a T. cruzi virulence factor, significantly decreases both Rab9a and Rab32 association with the vacuole. In summary, this work showed for the first time that specific molecules produced and secreted by the parasite can subvert intracellular components of host cells to benefit the infection. These new data shed light on the complex map of interactions between T. cruzi and the host cell and introduce concepts that can be useful in finding new forms of intervention against this parasite in the future.

2.
PLoS Pathog ; 18(10): e1010640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36191034

RESUMO

Colonization of host phagocytic cells by Leishmania metacyclic promastigotes involves several parasite effectors, including the zinc-dependent metalloprotease GP63. The major mode of action of this virulence factor entails the cleavage/degradation of host cell proteins. Given the potent proteolytic activity of GP63, identification of its substrates requires the adequate preparation of cell lysates to prevent artefactual degradation during cell processing. In the present study, we re-examined the cleavage/degradation of reported GP63 substrates when GP63 activity was efficiently neutralized during the preparation of cell lysates. To this end, we infected bone marrow-derived macrophages with either wild type, Δgp63, and Δgp63+GP63 L. major metacyclic promastigotes for various time points. We prepared cell lysates in the absence or presence of the zinc-metalloprotease inhibitor 1,10-phenanthroline and examined the levels and integrity of ten previously reported host cell GP63 substrates. Inhibition of GP63 activity with 1,10-phenanthroline during the processing of macrophages prevented the cleavage/degradation of several previously described GP63 targets, including PTP-PEST, mTOR, p65RelA, c-Jun, VAMP3, and NLRP3. Conversely, we confirmed that SHP-1, Synaptotagmin XI, VAMP8, and Syntaxin-5 are bona fide GP63 substrates. These results point to the importance of efficiently inhibiting GP63 activity during the preparation of Leishmania-infected host cell lysates. In addition, our results indicate that the role of GP63 in Leishmania pathogenesis must be re-evaluated.


Assuntos
Leishmania , Proteína Tirosina Fosfatase não Receptora Tipo 12 , Leishmania/metabolismo , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 12/metabolismo , Proteínas Qa-SNARE/metabolismo , Sinaptotagminas , Serina-Treonina Quinases TOR/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Fatores de Virulência , Zinco/metabolismo
3.
J Biol Chem ; 298(8): 102193, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764169

RESUMO

Macrophages respond to their environment by adopting a predominantly inflammatory or anti-inflammatory profile, depending on the context. The polarization of the subsequent response is regulated by a combination of intrinsic and extrinsic signals and is associated with alterations in macrophage metabolism. Although macrophages are important producers of Wnt ligands, the role of Wnt signaling in regulating metabolic changes associated with macrophage polarization remains unclear. Wnt4 upregulation has been shown to be associated with tissue repair and suppression of age-associated inflammation, which led us to generate Wnt4-deficient bone marrow-derived macrophages to investigate its role in metabolism. We show that loss of Wnt4 led to modified mitochondrial structure, enhanced oxidative phosphorylation, and depleted intracellular lipid reserves, as the cells depended on fatty acid oxidation to fuel their mitochondria. Further we found that enhanced lipolysis was dependent on protein kinase C-mediated activation of lysosomal acid lipase in Wnt4-deficient bone marrow-derived macrophages. Although not irreversible, these metabolic changes promoted parasite survival during infection with Leishmania donovani. In conclusion, our results indicate that enhanced macrophage fatty acid oxidation impairs the control of intracellular pathogens, such as Leishmania. We further suggest that Wnt4 may represent a potential target in atherosclerosis, which is characterized by lipid storage in macrophages leading to them becoming foam cells.


Assuntos
Aterosclerose , Fosforilação Oxidativa , Aterosclerose/metabolismo , Ácidos Graxos/metabolismo , Humanos , Ligantes , Lipídeos , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Proteína Wnt4/metabolismo
4.
J Cell Sci ; 134(5)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589499

RESUMO

Notch signaling governs crucial aspects of intercellular communication spanning antigen-presenting cells and T-cells. In this study, we investigate how Leishmaniadonovani takes advantage of this pathway to quell host immune responses. We report induction of the Notch ligand Jagged1 in L. donovani-infected bone marrow macrophages (BMMϕs) and subsequent activation of RBPJκ (also known as RBPJ) in T cells, which in turn upregulates the transcription factor GATA3. Activated RBPJκ also associates with the histone acetyltransferase p300 (also known as EP300), which binds with the Bcl2l12 promoter and enhances its expression. Interaction of Bcl2L12 with GATA3 in CD4+ T cells facilitates its binding to the interleukin (IL)-10 and IL-4 promoters, thereby increasing the secretion of these cytokines. Silencing Jagged1 hindered these events in a BMMϕ-T cell co-culture system. Upon further scrutiny, we found that parasite lipophosphoglycan (LPG) induces the host phosphoinositide 3-kinase (PI3K)/Akt pathway, which activates ß-catenin and Egr1, the two transcription factors responsible for driving Jagged1 expression. In vivo morpholino-silencing of Jagged1 suppresses anti-inflammatory cytokine responses and reduces organ parasite burden in L. donovani-infected Balb/c mice, suggesting that L. donovani-induced host Jagged1-Notch signaling skews macrophage-T cell crosstalk into disease-promoting Th2 mode in experimental visceral leishmaniasis.This article has an associated First Person interview with the first author of the paper.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Anti-Inflamatórios , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases
5.
J Immunol ; 207(9): 2297-2309, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34580108

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) regulate the vesicle transport machinery in phagocytic cells. Within the secretory pathway, Sec22b is an endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-resident SNARE that controls phagosome maturation and function in macrophages and dendritic cells. The secretory pathway controls the release of cytokines and may also impact the secretion of NO, which is synthesized by the Golgi-active inducible NO synthase (iNOS). Whether ERGIC SNARE Sec22b controls NO and cytokine secretion is unknown. Using murine bone marrow-derived dendritic cells, we demonstrated that inducible NO synthase colocalizes with ERGIC/Golgi markers, notably Sec22b and its partner syntaxin 5, in the cytoplasm and at the phagosome. Pharmacological blockade of the secretory pathway hindered NO and cytokine release, and inhibited NF-κB translocation to the nucleus. Importantly, RNA interference-mediated silencing of Sec22b revealed that NO and cytokine production were abrogated at the protein and mRNA levels. This correlated with reduced nuclear translocation of NF-κB. We also found that Sec22b co-occurs with NF-κB in both the cytoplasm and nucleus, pointing to a role for this SNARE in the shuttling of NF-κB. Collectively, our data unveiled a novel function for the ERGIC/Golgi, and its resident SNARE Sec22b, in the production and release of inflammatory mediators.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Células Dendríticas/imunologia , Mediadores da Inflamação/metabolismo , NF-kappa B/metabolismo , Fagossomos/metabolismo , Proteínas R-SNARE/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética
6.
Infect Immun ; 90(3): e0018321, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35130453

RESUMO

To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell soluble N-ethylmaleimide-sensitive-factor attachment protein receptor proteins to the expansion and functionality of communal vacuoles as well as the replication of the parasite. The differential patterns of recruitment of soluble N-ethylmaleimide-sensitive-factor attachment protein receptor to communal vacuoles harboring Leishmania amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to the optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither protein has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.


Assuntos
Leishmania mexicana , Leishmania , Animais , Habitação , Leishmania/fisiologia , Macrófagos/metabolismo , Mamíferos , Vacúolos/parasitologia , Proteína 3 Associada à Membrana da Vesícula/metabolismo
7.
PLoS Pathog ; 16(6): e1008291, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32479529

RESUMO

The protozoan parasite Leishmania donovani (L. donovani) causes visceral leishmaniasis, a chronic infection which is fatal when untreated. Herein, we investigated whether in addition to altering transcription, L. donovani modulates host mRNA translation to establish a successful infection. Polysome-profiling revealed that one third of protein-coding mRNAs expressed in primary mouse macrophages are differentially translated upon infection with L. donovani promastigotes or amastigotes. Gene ontology analysis identified key biological processes enriched for translationally regulated mRNAs and were predicted to be either activated (e.g. chromatin remodeling and RNA metabolism) or inhibited (e.g. intracellular trafficking and antigen presentation) upon infection. Mechanistic in silico and biochemical analyses showed selective activation mTOR- and eIF4A-dependent mRNA translation, including transcripts encoding central regulators of mRNA turnover and inflammation (i.e. PABPC1, EIF2AK2, and TGF-ß). L. donovani survival within macrophages was favored under mTOR inhibition but was dampened by pharmacological blockade of eIF4A. Overall, this study uncovers a vast yet selective reprogramming of the host cell translational landscape early during L. donovani infection, and suggests that some of these changes are involved in host defense mechanisms while others are part of parasite-driven survival strategies. Further in vitro and in vivo investigation will shed light on the contribution of mTOR- and eIF4A-dependent translational programs to the outcome of visceral leishmaniasis.


Assuntos
Fator de Iniciação 4A em Eucariotos/metabolismo , Leishmania donovani/metabolismo , Leishmaniose Visceral , Macrófagos , Biossíntese de Proteínas , RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos
8.
J Immunol ; 204(3): 596-610, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31882519

RESUMO

Immune evasion strategies adopted by Leishmania donovani involve the exploitation of suppressor of cytokine signaling (SOCS) proteins that are well-known negative regulators of the JAK/STAT pathway. However, the cellular mechanism underpinning the induction of SOCS isoforms and their role in breaching the multilevel regulatory circuit connecting the innate and adaptive arms of immunity are still ambiguous during experimental visceral leishmaniasis. Using bone marrow-derived macrophages (BMMфs) and CD4+ T cells, we observed that L. donovani preferentially upregulates SOCS1 and SOCS3 expression in macrophages and T cells, respectively, whereas the SOCS1 level remains consistently high in BMMфs and SOCS3 expression is pronounced and long lasting in T cells. Consequently, this inhibits STAT1-mediated IL-12 induction in macrophages & STAT4-mediated IFN-γ synthesis in T cells. Mechanistically, PI3K/Akt-mediated SRF activation promotes nuclear translocation and binding of Egr2 to SOCS1 promoter for its early induction in infected BMMфs. Additionally, L. donovani activates IDO/kynurenine/AHR signaling in BMMфs to maintain prolonged SOCS1 expression. Later, PGE2, secreted from infected BMMфs induces cAMP-PKA pathway by binding to the EP2/EP4 receptor of CD4+ T cells, leading to SP1, CREB, and GATA1 activation and SOCS3 expression. Small interfering RNA-mediated silencing of SOCS1 and SOCS3 in macrophage and T cells, respectively, restored IL-12 and IFN-γ cytokine levels and BMMф-T cell interaction. Vivo morpholino-mediated silencing of SOCS1 and SOCS3 resulted in protective cytokine responses, thereby reducing organ parasite burden significantly in L. donovani-infected BALB/c mice. Collectively, our results imply that L. donovani orchestrates different SOCS isoforms to impair macrophage-T cell cross-talk and preserve its own niche.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Animais , Comunicação Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune , Imunidade Celular , Interferon gama/metabolismo , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Isoformas de Proteínas/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 3 Supressora da Sinalização de Citocinas/genética , Regulação para Cima
9.
Infect Immun ; 89(7): e0000921, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33875473

RESUMO

Leishmaniasis, a debilitating disease with clinical manifestations ranging from self-healing ulcers to life-threatening visceral pathologies, is caused by protozoan parasites of the Leishmania genus. These professional vacuolar pathogens are transmitted by infected sand flies to mammalian hosts as metacyclic promastigotes and are rapidly internalized by various phagocyte populations. Classical monocytes are among the first myeloid cells to migrate to infection sites. Recent evidence shows that recruitment of these cells contributes to parasite burden and the establishment of chronic disease. However, the nature of Leishmania-inflammatory monocyte interactions during the early stages of host infection has not been well investigated. Here, we aimed to assess the impact of Leishmania donovani metacyclic promastigotes on antimicrobial responses within these cells. Our data showed that inflammatory monocytes are readily colonized by L. donovani metacyclic promastigotes, while infection with Escherichia coli is efficiently cleared. Upon internalization, metacyclic promastigotes inhibited superoxide production at the parasitophorous vacuole (PV) through a mechanism involving exclusion of NADPH oxidase subunits gp91phox and p47phox from the PV membrane. Moreover, we observed that unlike phagosomes enclosing zymosan particles, vacuoles containing parasites acidify poorly. Interestingly, whereas the parasite surface coat virulence glycolipid lipophosphoglycan (LPG) was responsible for the inhibition of PV acidification, impairment of the NADPH oxidase assembly was independent of LPG and GP63. Collectively, these observations indicate that permissiveness of inflammatory monocytes to L. donovani may thus be related to the ability of this parasite to impair the microbicidal properties of phagosomes.


Assuntos
Interações Hospedeiro-Parasita , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Monócitos/imunologia , Monócitos/parasitologia , Fagossomos/imunologia , Fagossomos/parasitologia , Glicoesfingolipídeos/metabolismo , Interações Hospedeiro-Parasita/imunologia , Leishmania donovani/metabolismo , Leishmania donovani/patogenicidade , Monócitos/metabolismo , NADPH Oxidases/metabolismo , Virulência , Fatores de Virulência
10.
PLoS Pathog ; 15(7): e1007982, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356625

RESUMO

To colonize phagocytes, Leishmania subverts microbicidal processes through components of its surface coat that include lipophosphoglycan and the GP63 metalloprotease. How these virulence glycoconjugates are shed, exit the parasitophorous vacuole (PV), and traffic within host cells is poorly understood. Here, we show that lipophosphoglycan and GP63 are released from the parasite surface following phagocytosis and redistribute to the endoplasmic reticulum (ER) of macrophages. Pharmacological disruption of the trafficking between the ER and the Golgi hindered the exit of these molecules from the PV and dampened the cleavage of host proteins by GP63. Silencing by RNA interference of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptors Sec22b and syntaxin-5, which regulate ER-Golgi trafficking, identified these host proteins as components of the machinery that mediates the spreading of Leishmania effectors within host cells. Our findings unveil a mechanism whereby a vacuolar pathogen takes advantage of the host cell's secretory pathway to promote egress of virulence factors beyond the PV.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Leishmania/fisiologia , Leishmania/patogenicidade , Proteínas de Protozoários/fisiologia , Fatores de Virulência/fisiologia , Animais , Retículo Endoplasmático/parasitologia , Feminino , Glicoesfingolipídeos/fisiologia , Humanos , Leishmania/crescimento & desenvolvimento , Leishmaniose/parasitologia , Metaloendopeptidases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/parasitologia , Fagocitose , Fagossomos/parasitologia , Proteínas Qa-SNARE/fisiologia , Proteínas R-SNARE/fisiologia , Via Secretória , Vacúolos/parasitologia , Virulência
11.
J Immunol ; 202(4): 1163-1175, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635391

RESUMO

Neutrophils, the essential components of the innate immune system, are recruited in large numbers to the pathogen site of entry. Several pathogens induce neutrophil autophagy; however, function of autophagic events during Leishmania parasite infection remain unknown. In this article, we report a finding that is new, to our knowledge, of how Leishmania-induced human polymorphonuclear neutrophil (hPMN) autophagy regulates the silent mode of parasite transfer to macrophages by influencing the engulfment of infected cells. Leishmania infection induced a time-dependent autophagy increase responsive to block by 3-methyladenine but sensitive to ULK1/2 inhibition only after 3 h. This suggested the prevalence of canonical autophagy during later hours, ULK1/2 inhibition being able to block only canonical autophagy. Interaction of Rubicon and Beclin-1 at 1 h postinfection affirmed the prevalence of noncanonical autophagy during early infection. There was a reduction in macrophage uptake of parasite-exposed hPMNs treated with 3-methyladenine or ULK1/2 inhibitor, suggesting the involvement of both noncanonical and canonical autophagy in neutrophil engulfment. Autophagy inducer rapamycin augmented neutrophil engulfment by macrophages. Redistribution of hPMN surface CD47 encouraged neutrophil uptake. Activation of ERK, phosphoinositide 3-kinase, and NADPH oxidase-mediated reactive oxygen species generation were induced after parasite binding. The lpg1-knockout parasites expressing defective lipophosphoglycan did not induce autophagy, indicating that lipophosphoglycan is necessary for interaction with the neutrophils. Autophagy induction was TLR2/4 independent because the receptor blockade did not interfere with infection-induced autophagy. In summary, the engulfment of neutrophils by the macrophages was influenced by the escalation of hPMN autophagy, which is an important event during Leishmania infection.


Assuntos
Autofagia/imunologia , Leishmania donovani/imunologia , Leishmaniose/imunologia , Neutrófilos/imunologia , Antibacterianos/farmacologia , Autofagia/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Neutrófilos/efeitos dos fármacos , Sirolimo/farmacologia
12.
Infect Immun ; 87(5)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804103

RESUMO

CXCL16 is a multifunctional chemokine that is highly expressed by macrophages and other immune cells in response to bacterial and viral pathogens; however, little is known regarding the role of CXCL16 during parasitic infections. The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis. Even though chemokine production is a host defense mechanism during infection, subversion of the host chemokine system constitutes a survival strategy adopted by the parasite. Here, we report that L. donovani promastigotes upregulate CXCL16 synthesis and secretion by bone marrow-derived macrophages (BMDM). In contrast to wild-type parasites, a strain deficient in the virulence factor lipophosphoglycan (LPG) failed to induce CXCL16 production. Consistent with this, cell treatment with purified L. donovani LPG augmented CXCL16 expression and secretion. Notably, the ability of BMDM to promote migration of cells expressing CXCR6, the cognate receptor of CXCL16, was augmented upon L. donovani infection in a CXCL16- and LPG-dependent manner. Mechanistically, CXCL16 induction by L. donovani required the activity of AKT and the mechanistic target of rapamycin (mTOR) but was independent of Toll-like receptor signaling. Collectively, these data provide evidence that CXCL16 is part of the inflammatory response elicited by L. donovani LPG in vitro Further investigation using CXCL16 knockout mice is required to determine whether this chemokine contributes to the pathogenesis of visceral leishmaniasis and to elucidate the underlying molecular mechanisms.


Assuntos
Quimiocina CXCL16/imunologia , Quimiotaxia/imunologia , Glicoesfingolipídeos/imunologia , Interações Hospedeiro-Parasita/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
13.
Biochem Biophys Res Commun ; 495(2): 1964-1971, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29247647

RESUMO

Biogenesis of phagolysosomes is central to the elimination of pathogens by macrophages. We previously showed that Src homology region 2 domain-containing phosphatase 1 (SHP-1) participates in the regulation of phagosome maturation. Through proteomics, we identified moesin and the non-muscle myosin-IIA as proteins interacting with SHP-1 during phagocytosis. Silencing of either moesin or myosin IIA with small interfering RNA inhibited phagosomal acidification and recruitment of LAMP-1. Moreover, the intraphagosomal oxidative burst was impaired in the absence of either SHP-1 or myosin IIA but not moesin. Finally, absence of either SHP-1, moesin, or myosin IIA ablated the capacity of macrophages to clear bacterial infection. Collectively, these results implicate both moesin and myosin IIA in the regulation of phagolysosome biogenesis and in host defense against infections.


Assuntos
Escherichia coli/imunologia , Regulação da Expressão Gênica/imunologia , Macrófagos/imunologia , Proteínas dos Microfilamentos/imunologia , Miosina não Muscular Tipo IIA/imunologia , Fagocitose/imunologia , Fagossomos/imunologia , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos BALB C
14.
PLoS Pathog ; 12(5): e1005658, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27191844

RESUMO

Cysteine peptidases play a central role in the biology of Leishmania. In this work, we sought to further elucidate the mechanism(s) by which the cysteine peptidase CPB contributes to L. mexicana virulence and whether CPB participates in the formation of large communal parasitophorous vacuoles induced by these parasites. We initially examined the impact of L. mexicana infection on the trafficking of VAMP3 and VAMP8, two endocytic SNARE proteins associated with phagolysosome biogenesis and function. Using a CPB-deficient mutant, we found that both VAMP3 and VAMP8 were down-modulated in a CPB-dependent manner. We also discovered that expression of the virulence-associated GPI-anchored metalloprotease GP63 was inhibited in the absence of CPB. Expression of GP63 in the CPB-deficient mutant was sufficient to down-modulate VAMP3 and VAMP8. Similarly, episomal expression of GP63 enabled the CPB-deficient mutant to establish infection in macrophages, induce the formation of large communal parasitophorous vacuoles, and cause lesions in mice. These findings implicate CPB in the regulation of GP63 expression and provide evidence that both GP63 and CPB are key virulence factors in L. mexicana.


Assuntos
Regulação da Expressão Gênica/fisiologia , Leishmania mexicana/patogenicidade , Leishmaniose Cutânea/metabolismo , Metaloendopeptidases/biossíntese , Proteínas de Protozoários/metabolismo , Animais , Western Blotting , Cisteína/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Peptídeo Hidrolases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Fatores de Virulência/metabolismo
15.
PLoS Pathog ; 12(6): e1005690, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280768

RESUMO

The protozoan Leishmania parasitizes macrophages and evades the microbicidal consequences of phagocytosis through the inhibition of phagolysosome biogenesis. In this study, we investigated the impact of this parasite on LC3-associated phagocytosis, a non-canonical autophagic process that enhances phagosome maturation and functions. We show that whereas internalization of L. major promastigotes by macrophages promoted LC3 lipidation, recruitment of LC3 to phagosomes was inhibited through the action of the parasite surface metalloprotease GP63. Reactive oxygen species generated by the NOX2 NADPH oxidase are necessary for LC3-associated phagocytosis. We found that L. major promastigotes prevented, in a GP63-dependent manner, the recruitment of NOX2 to phagosomes through a mechanism that does not involve NOX2 cleavage. Moreover, we found that the SNARE protein VAMP8, which regulates phagosomal assembly of the NADPH oxidase NOX2, was down-modulated by GP63. In the absence of VAMP8, recruitment of LC3 to phagosomes containing GP63-deficient parasites was inhibited, indicating that VAMP8 is involved in the phagosomal recruitment of LC3. These findings reveal a role for VAMP8 in LC3-associated phagocytosis and highlight a novel mechanism exploited by L. major promastigotes to interfere with the host antimicrobial machinery.


Assuntos
Leishmaniose Cutânea/metabolismo , Macrófagos/metabolismo , Metaloendopeptidases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose/fisiologia , Proteínas R-SNARE/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Leishmania major , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Metaloendopeptidases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas R-SNARE/imunologia
16.
Cell Immunol ; 309: 1-6, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27531526

RESUMO

Leishmania is the eukaryotic parasite responsible for leishmaniases, a spectrum of diseases that puts at risk roughly 350millions of people in 98 countries according to the Drugs for Neglected Diseases initiative (DNDi). This parasite has a complex life cycle composed of two distinct stages, the promastigote form found in the female sand-fly vector and the amastigote form that replicates in the mammalian host (Teixeira et al., 2013) [1]. To survive, the parasite interacts with its host immune system at multiple levels. In this review, we discuss the nature of those interactions, how they affect the host immune system, and how they affect parasite survival from the very beginning of the life cycle in the vector to its dissemination within the mammalian host.


Assuntos
Interações Hospedeiro-Parasita , Imunidade Inata , Leishmania/fisiologia , Leishmaniose/imunologia , Fagossomos/metabolismo , Animais , Feminino , Humanos , Estágios do Ciclo de Vida , Fagossomos/microbiologia , Psychodidae
17.
J Immunol ; 193(5): 2363-72, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25063865

RESUMO

Synaptotagmins (Syts) are type-I membrane proteins that regulate vesicle docking and fusion in processes such as exocytosis and phagocytosis. We recently discovered that Syt XI is a recycling endosome- and lysosome-associated protein that negatively regulates the secretion of TNF and IL-6. In this study, we show that Syt XI is directly degraded by the zinc metalloprotease GP63 and excluded from Leishmania parasitophorous vacuoles by the promastigotes surface glycolipid lipophosphoglycan. Infected macrophages were found to release TNF and IL-6 in a GP63-dependent manner. To demonstrate that cytokine release was dependent on GP63-mediated degradation of Syt XI, small interfering RNA-mediated knockdown of Syt XI before infection revealed that the effects of small interfering RNA knockdown and GP63 degradation were not cumulative. In mice, i.p. injection of GP63-expressing parasites led to an increase in TNF and IL-6 secretion and to an augmented influx of neutrophils and inflammatory monocytes to the inoculation site. Both of these cell types have been shown to be infection targets and aid in the establishment of infection. In sum, our data revealed that GP63 induces proinflammatory cytokine release and increases infiltration of inflammatory phagocytes. This study provides new insight on how Leishmania exploits the immune response to establish infection.


Assuntos
Interleucina-6/imunologia , Leishmania/imunologia , Leishmaniose/imunologia , Macrófagos Peritoneais/imunologia , Sinaptotagminas/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linhagem Celular , Cricetinae , Feminino , Interleucina-6/genética , Leishmania/genética , Leishmaniose/genética , Leishmaniose/patologia , Macrófagos Peritoneais/parasitologia , Macrófagos Peritoneais/patologia , Metaloendopeptidases/genética , Metaloendopeptidases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Monócitos/imunologia , Monócitos/patologia , Sinaptotagminas/genética , Fator de Necrose Tumoral alfa/genética
18.
Mol Microbiol ; 93(1): 146-66, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24823804

RESUMO

Leishmania parasites cause important human morbidity and mortality. Essential Leishmania genes escape genetic assessment by loss-of-function analyses due to lethal null mutant phenotypes, even though these genes and their products are biologically most significant and represent validated drug targets. Here we overcome this limitation using a facilitated null mutant approach applied for the functional genetic analysis of the MAP kinase LmaMPK4. This system relies on the episomal expression of the target gene from vector pXNG that expresses the Herpes simplex virus thymidine kinase gene thus rendering transgenic parasites susceptible for negative selection using the antiviral drug ganciclovir. Using this system we establish the genetic proof of LmaMPK4 as essential kinase in promastigotes. LmaMPK4 structure/function analysis by plasmid shuffle allowed us to identify regulatory kinase sequence elements relevant for chemotherapeutic intervention. A partial null mutant, expressing an MPK4 derivative with altered ATP-binding properties, showed defects in metacyclogenesis, establishing a first link of MPK4 function to parasite differentiation. The approaches presented here are broadly applicable to any essential gene in Leishmania thus overcoming major bottlenecks for their functional genetic analysis and their exploitation for structure-informed drug development.


Assuntos
Genes Essenciais , Leishmania major/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Animais , Morte Celular , Feminino , Ganciclovir/farmacologia , Técnicas de Inativação de Genes , Genes Virais , Leishmania major/efeitos dos fármacos , Leishmania major/enzimologia , Leishmaniose Cutânea/microbiologia , Leishmaniose Cutânea/patologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Plasmídeos/genética , Plasmídeos/metabolismo , Simplexvirus/enzimologia , Timidina Quinase/genética , Timidina Quinase/metabolismo
19.
J Immunol ; 190(4): 1737-45, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23303671

RESUMO

Synaptotagmins (Syts) are a group of type I membrane proteins that regulate vesicle docking and fusion in processes such as exocytosis and phagocytosis. All Syts possess a single transmembrane domain, and two conserved tandem Ca(2+)-binding C2 domains. However, Syts IV and XI possess a conserved serine in their C2A domain that precludes these Syts from binding Ca(2+) and phospholipids, and from mediating vesicle fusion. Given the importance of vesicular trafficking in macrophages, we investigated the role of Syt XI in cytokine secretion and phagocytosis. We demonstrated that Syt XI is expressed in murine macrophages, localized in recycling endosomes, lysosomes, and recruited to phagosomes. Syt XI had a direct effect on phagocytosis and on the secretion of TNF and IL-6. Whereas small interfering RNA-mediated knockdown of Syt XI potentiated secretion of these cytokines and particle uptake, overexpression of an Syt XI construct suppressed these processes. In addition, Syt XI knockdown led to decreased recruitment of gp91(phox) and lysosomal-associated membrane protein-1 to phagosomes, suggesting attenuated microbicidal activity. Remarkably, knockdown of Syt XI ensued in enhanced bacterial survival. Our data reveal a novel role for Syt XI as a regulator of cytokine secretion, particle uptake, and macrophage microbicidal activity.


Assuntos
Citocinas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Sinaptotagminas/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Endossomos/imunologia , Endossomos/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células PC12 , Fagossomos/imunologia , Fagossomos/metabolismo , Ratos , Sinaptotagminas/antagonistas & inibidores , Sinaptotagminas/genética
20.
J Immunol ; 189(5): 2203-10, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22826316

RESUMO

The process of phagocytosis and phagosome maturation involves the recruitment of effector proteins that participate in phagosome formation and in the acidification and/or fusion with various endocytic vesicles. In the current study, we investigated the role of the Src homology region 2 domain-containing phosphatase 1 (SHP-1) in phagolysosome biogenesis. To this end, we used immortalized bone marrow macrophages derived from SHP-1-deficient motheaten mice and their wild-type littermates. We found that SHP-1 is recruited early and remains present on phagosomes for up to 4 h postphagocytosis. Using confocal immunofluorescence microscopy and Western blot analyses on purified phagosome extracts, we observed an impaired recruitment of lysosomal-associated membrane protein 1 in SHP-1-deficient macrophages. Moreover, Western blot analyses revealed that whereas the 51-kDa procathepsin D is recruited to phagosomes, it is not processed into the 46-kDa cathepsin D in the absence of SHP-1, suggesting a defect in acidification. Using the lysosomotropic agent LysoTracker as an indicator of phagosomal pH, we obtained evidence that in the absence of SHP-1, phagosome acidification was impaired. Taken together, these results are consistent with a role for SHP-1 in the regulation of signaling or membrane fusion events involved in phagolysosome biogenesis.


Assuntos
Células da Medula Óssea/enzimologia , Diferenciação Celular/imunologia , Lisossomos/enzimologia , Macrófagos/enzimologia , Fagossomos/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular Transformada , Feminino , Concentração de Íons de Hidrogênio , Lisossomos/imunologia , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Knockout , Fagossomos/imunologia , Fagossomos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA