Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncogene ; 40(6): 1191-1202, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33323965

RESUMO

Colorectal tumors are hierarchically organized and governed by populations of self-renewing cancer stem cells, representing one of the deadliest types of cancers worldwide. Emergence of cancer stemness phenotype depends on epigenetic reprogramming, associated with profound transcriptional changes. As described for pluripotent reprogramming, epigenetic modifiers play a key role in cancer stem cells by establishing embryonic stem-like transcriptional programs, thus impacting the balance between self-renewal and differentiation. We identified overexpression of histone methyltransferase G9a as a risk factor for colorectal cancer, associated with shorter relapse-free survival. Moreover, using human transformed pluripotent cells as a surrogate model for cancer stem cells, we observed that G9a activity is essential for the maintenance of embryonic-like transcriptional signature promoting self-renewal, tumorigenicity, and undifferentiated state. Such a role was also applicable to colorectal cancer, where inhibitors of G9a histone methyltransferase function induced intestinal differentiation while restricting tumor-initiating activity in patient-derived colorectal tumor samples. Finally, by integrating transcriptome profiling with G9a/H3K9me2 loci co-occupancy, we identified the canonical Wnt pathway, epithelial-to-mesenchyme transition, and extracellular matrix organization as potential targets of such a chromatin regulation mechanism in colorectal cancer stem cells. Overall, our findings provide novel insights on the role of G9a as a driver of cancer stem cell phenotype, promoting self-renewal, tumorigenicity, and undifferentiated state.


Assuntos
Carcinógenos/metabolismo , Neoplasias Colorretais/genética , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Células-Tronco Neoplásicas/metabolismo , Autorrenovação Celular/genética , Reprogramação Celular/genética , Neoplasias Colorretais/patologia , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Intervalo Livre de Progressão , Transcriptoma/genética
2.
iScience ; 24(12): 103442, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877499

RESUMO

Cancer stem cells (CSCs) are documented to play a key role in tumorigenesis and therapy resistance. Despite significant progress in clinical oncology, CSC reservoirs remain elusive and difficult to eliminate. Reverse-turn peptidomimetics were characterized as disruptors of CBP/beta-Catenin interactions and represent a promising avenue to curb hyperactive canonical Wnt/beta-Catenin signaling in CSCs. Recent studies suggested Sam68 as a critical mediator of reverse-turn peptidomimetics response in CSC populations. Using computational and biochemical approaches we confirmed Sam68 as a primary target of reverse-turn peptidomimetics. Furthermore, we executed an in silico drug discovery pipeline to identify yet uncharacterized reverse-turn peptidomimetic structures displaying superior anti-CSC activity in transformed pluripotent and colorectal cancer cell models. Thus, we identified YB-0158 as a reverse-turn peptidomimetic small molecule with enhanced translational potential, altering key hallmarks of human colorectal CSCs in patient-derived ex vivo organoids and in vivo serial tumor transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA