Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 30(25): 44701-44716, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522889

RESUMO

For wireless networks beyond 5G, directivity and reconfigurability of antennas are highly relevant. Therefore, we propose a linear antenna array based on photodiodes operating at 300 GHz, and an optical phased array based on polymer waveguides to orchestrate the antennas. Due to its low thermal conductivity and high thermo-optical coefficient, the polymer chip enables highly efficient and crosstalk-free phase shifting. With these, we demonstrate purely photonic-controlled beam steering across 20°. Compared to a single emitter, the 3-dB beam width is reduced by 8.5° to 22.5° and the output power is >10 dB higher. Employing Snell's law for coupling into air, we can precisely predict the radiation patterns.

2.
Opt Express ; 29(6): 8244-8257, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820274

RESUMO

In future wireless communication networks at terahertz frequencies, the directivity and the beam profile of the emitters are highly relevant since no additional beam forming optics can be placed in free-space between the emitter and receiver. We investigated the radiation pattern and the polarization of broadband continuous-wave (cw) terahertz emitters experimentally and by numerical simulations between 100 GHz and 500 GHz. The emitters are indium phosphide (InP) photodiodes with attached planar antenna, mounted on a hyper-hemispherical silicon lens and integrated into a fiber-pigtailed module. As both packaging and material of the emitter was identical for all devices, similarities and differences can be directly linked to the antenna structure. We found that the feeding point structure that connects photodiode and antenna has a large influence on the radiation pattern. By optimizing the feeding point, we could reduce side lobes from -2 dB to -13 dB and narrow the 6dB beam angle from ±14° to ±9° at 300 GHz.

3.
Nat Commun ; 12(1): 1071, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594078

RESUMO

Broadband terahertz spectroscopy enables many promising applications in science and industry alike. However, the complexity of existing terahertz systems has as yet prevented the breakthrough of this technology. In particular, established terahertz time-domain spectroscopy (TDS) schemes rely on complex femtosecond lasers and optical delay lines. Here, we present a method for optoelectronic, frequency-modulated continuous-wave (FMCW) terahertz sensing, which is a powerful tool for broadband spectroscopy and industrial non-destructive testing. In our method, a frequency-swept optical beat signal generates the terahertz field, which is then coherently detected by photomixing, employing a time-delayed copy of the same beat signal. Consequently, the receiver current is inherently phase-modulated without additional modulator. Owing to this technique, our broadband terahertz spectrometer performs (200 Hz measurement rate, or 4 THz bandwidth and 117 dB peak dynamic range with averaging) comparably to state-of-the-art terahertz-TDS systems, yet with significantly reduced complexity. Thickness measurements of multilayer dielectric samples with layer-thicknesses down to 23 µm show its potential for real-world applications. Within only 0.2 s measurement time, an uncertainty of less than 2 % is achieved, the highest accuracy reported with continuous-wave terahertz spectroscopy. Hence, the optoelectronic FMCW approach paves the way towards broadband and compact terahertz spectrometers that combine fiber optics and photonic integration technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA