RESUMO
Linked Science is the practice of inter-connecting scientific assets by publishing, sharing and linking scientific data and processes in end-to-end loosely coupled workflows that allow the sharing and re-use of scientific data. Much of this data does not live in the cloud or on the Web, but rather in multi-institutional data centers that provide tools and add value through quality assurance, validation, curation, dissemination, and analysis of the data. In this paper, we make the case for the use of scientific scenarios in Linked Science. We propose a scenario in river-channel transport that requires biogeochemical experimental data and global climate-simulation model data from many sources. We focus on the use of ontologies-formal machine-readable descriptions of the domain-to facilitate search and discovery of this data. Mercury, developed at Oak Ridge National Laboratory, is a tool for distributed metadata harvesting, search and retrieval. Mercury currently provides uniform access to more than 100,000 metadata records; 30,000 scientists use it each month. We augmented search in Mercury with ontologies, such as the ontologies in the Semantic Web for Earth and Environmental Terminology (SWEET) collection by prototyping a component that provides access to the ontology terms from Mercury. We evaluate the coverage of SWEET for the ORNL Distributed Active Archive Center (ORNL DAAC).