Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microbiology (Reading) ; 166(1): 73-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621557

RESUMO

Azelaic acid is a dicarboxylic acid that has recently been shown to play a role in plant-bacteria signalling and also occurs naturally in several cereals. Several bacteria have been reported to be able to utilize azelaic acid as a unique source of carbon and energy, including Pseudomonas nitroreducens. In this study, we utilize P. nitroreducens as a model organism to study bacterial degradation of and response to azelaic acid. We report genetic evidence of azelaic acid degradation and the identification of a transcriptional regulator that responds to azelaic acid in P. nitroreducens DSM 9128. Three mutants possessing transposons in genes of an acyl-CoA ligase, an acyl-CoA dehydrogenase and an isocitrate lyase display a deficient ability in growing in azelaic acid. Studies on transcriptional regulation of these genes resulted in the identification of an IclR family repressor that we designated as AzeR, which specifically responds to azelaic acid. A bioinformatics survey reveals that AzeR is confined to a few proteobacterial genera that are likely to be able to degrade and utilize azelaic acid as the sole source of carbon and energy.


Assuntos
Ácidos Dicarboxílicos/metabolismo , Pseudomonas/metabolismo , Fatores de Transcrição/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Dicarboxílicos/química , Regulação Bacteriana da Expressão Gênica , Estrutura Molecular , Mutação , Filogenia , Regiões Promotoras Genéticas , Pseudomonas/classificação , Pseudomonas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética
2.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32332134

RESUMO

Endophytes are microorganisms that live inside plants and are often beneficial for the host. Kosakonia is a novel bacterial genus that includes several species that are diazotrophic and plant associated. This study revealed two quorum sensing-related LuxR solos, designated LoxR and PsrR, in the plant endophyte Kosakonia sp. strain KO348. LoxR modeling and biochemical studies demonstrated that LoxR binds N-acyl homoserine lactones (AHLs) in a promiscuous way. PsrR, on the other hand, belongs to the subfamily of plant-associated-bacterium (PAB) LuxR solos that respond to plant compounds. Target promoter studies as well as modeling and phylogenetic comparisons suggest that PAB LuxR solos are likely to respond to different plant compounds. Finally, LoxR is involved in the regulation of T6SS and PsrR plays a role in root endosphere colonization.IMPORTANCE Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling.


Assuntos
Proteínas de Bactérias/genética , Endófitos/genética , Enterobacteriaceae/genética , Proteínas Repressoras/genética , Transativadores/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endófitos/metabolismo , Enterobacteriaceae/metabolismo , Oryza/microbiologia , Filogenia , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Alinhamento de Sequência , Simbiose/genética , Transativadores/química , Transativadores/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-28137800

RESUMO

Pseudomonas aeruginosa infections represent a serious threat to worldwide health. Proline-rich antimicrobial peptides (PR-AMPs), a particular group of peptide antibiotics, have demonstrated in vitro activity against P. aeruginosa strains. Here we show that the mammalian PR-AMP Bac7(1-35) is active against some multidrug-resistant cystic fibrosis isolates of P. aeruginosa By confocal microscopy and cytometric analyses, we investigated the mechanism of killing against P. aeruginosa strain PAO1 and three selected isolates, and we observed that the peptide inactivated the target cells by disrupting their cellular membranes. This effect is deeply different from that previously described for PR-AMPs in Escherichia coli and Salmonella enterica serovar Typhimurium, where these peptides act intracellularly after having been internalized by means of the transporter SbmA without membranolytic effects. The heterologous expression of SbmA in PAO1 cells enhanced the internalization of Bac7(1-35) into the cytoplasm, making the bacteria more susceptible to the peptide but at the same time more resistant to the membrane lysis, similarly to what occurs in E. coli The results evidenced a new mechanism of action for PR-AMPs and indicate that Bac7 has multiple and variable modes of action that depend on the characteristics of the different target species and the possibility to be internalized by bacterial transporters. This feature broadens the spectrum of activity of the peptide and makes the development of peptide-resistant bacteria a more difficult process.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bovinos , Membrana Celular/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Microscopia Confocal , Transporte Proteico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestrutura , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Especificidade da Espécie , Transgenes
4.
Microbiology (Reading) ; 163(5): 765-777, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28530166

RESUMO

Pseudomonas fuscovaginae (Pfv) is an emerging plant pathogen causing sheath brown rot in rice, as well as diseases in other gramineae food crops including maize, sorghum and wheat. Pfv possesses two conserved N-acyl homoserine lactone (AHL) quorum sensing (QS) systems called PfvI/R and PfsI/R, which are repressed by RsaL and RsaM, respectively. The two systems are not hierarchically organized and are involved in plant virulence. In this study the AHL QS PfsI/R, PfvI/R and RsaM regulons were determined by transcriptomic analysis. The PfsI/R system regulates 98 genes, whereas 26 genes are regulated by the PfvI/R AHL QS system; only two genes are regulated by both systems. RsaM, on the other hand, regulates over 400 genes: 206 are negatively regulated and 260 are positively regulated. More than half of the genes controlled by the PfsI/R system and 65 % by the PfvI/R system are also part of the RsaM regulon; this is due to RsaM being involved in the regulation of both systems. It is concluded that the two QS systems regulate a unique set of genes and that RsaM is a global regulator mediating the expression of different genes through the two QS systems as well as genes independently of QS.

5.
Appl Environ Microbiol ; 82(17): 5364-74, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27342562

RESUMO

The Zn-dependent membrane-located protease YvjB has previously been shown to serve as a target receptor for LsbB, a class II leaderless lactococcal bacteriocin. Although yvjB is highly conserved in the genus Lactococcus, the bacteriocin appears to be active only against the subspecies L. lactis subsp. lactis Comparative analysis of the YvjB proteins of a sensitive strain (YvjBMN) and a resistant strain (YvjBMG) showed that they differ from each other in 31 positions. In this study, we applied site-directed mutagenesis and performed directed binding studies to provide biochemical evidence that LsbB interacts with the third transmembrane helix of YvjB in susceptible cells. The site-directed mutagenesis of LsbB and YvjB proteins showed that certain amino acids and the length of LsbB are responsible for the bacteriocin activity, most probably through adequate interaction of these two proteins; the essential amino acids in LsbB responsible for the activity are tryptophan (Trp(25)) and terminal alanine (Ala(30)). It was also shown that the distance between Trp(25) and terminal alanine is crucial for LsbB activity. The crucial region in YvjB for the interaction with LsbB is the beginning of the third transmembrane helix, particularly amino acids tyrosine (Tyr(356)) and alanine (Ala(353)). In vitro experiments showed that LsbB could interact with both YvjBMN and YvjBMG, but the strength of interaction is significantly less with YvjBMG In vivo experiments with immunofluorescently labeled antibody demonstrated that LsbB specifically interacts only with cells carrying YvjBMN IMPORTANCE: The antimicrobial activity of LsbB bacteriocin depends on the correct interaction with the corresponding receptor in the bacterial membrane of sensitive cells. Membrane-located bacteriocin receptors have essential primary functions, such as cell wall synthesis or sugar transport, and it seems that interaction with bacteriocins is suicidal for cells. This study showed that the C-terminal part of LsbB is crucial for the bacteriocin activity, most probably through adequate interaction with the third transmembrane domain of the YvjB receptor. The conserved Tyr(356) and Ala(353) residues of YvjB are essential for the function of this Zn-dependent membrane-located protease as a bacteriocin receptor.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Endopeptidases/metabolismo , Lactococcus lactis/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/genética , Endopeptidases/química , Endopeptidases/genética , Lactococcus lactis/química , Lactococcus lactis/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência
6.
Appl Environ Microbiol ; 82(4): 1274-1285, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26655754

RESUMO

Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium.


Assuntos
Alphaproteobacteria/enzimologia , Ligases/isolamento & purificação , Microbiota , Simbiose , Theonella/microbiologia , Acil-Butirolactonas/metabolismo , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Oceano Índico , Ligases/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA
7.
J Bacteriol ; 194(10): 2765-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22535942

RESUMO

Pseudomonas fuscovaginae was first reported as a pathogen of rice causing sheath rot in plants grown at high altitudes. P. fuscovaginae is now considered a broad-host-range plant pathogen causing disease in several economically important plants. We report what is, to our knowledge, the first draft genome sequence of a P. fuscovaginae strain.


Assuntos
Genoma Bacteriano , Doenças das Plantas/microbiologia , Poaceae/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , Dados de Sequência Molecular , Pseudomonas/patogenicidade , Virulência
8.
Appl Environ Microbiol ; 76(13): 4302-17, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20435760

RESUMO

The genus Burkholderia includes over 60 species isolated from a wide range of environmental niches and can be tentatively divided into two major species clusters. The first cluster includes pathogens such as Burkholderia glumae, B. pseudomallei, and B. mallei and 17 well-studied species of the Burkholderia cepacia complex. The other recently established cluster comprises at least 29 nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that Burkholderia kururiensis, a member of the latter cluster, possesses an N-acyl homoserine lactone (AHL) quorum-sensing (QS) system designated "BraI/R," which is found in all species of the plant-associated cluster. In the present study, two other BraI/R-like systems were characterized in B. xenovorans and B. unamae and were designated the BraI/R(XEN) and BraI/R(UNA) systems, respectively. Several phenotypes were analyzed, and it was determined that exopolysaccharide was positively regulated by the BraIR-like system in the species B. kururiensis, B. unamae, and B. xenovorans, highlighting commonality in targets. However, the three BraIR-like systems also revealed differences in targets since biofilm formation and plant colonization were differentially regulated. In addition, a second AHL QS system designated XenI2/R2 and an unpaired LuxR solo protein designated BxeR solo were also identified and characterized in B. xenovorans LB400(T). The two AHL QS systems of B. xenovorans are not transcriptionally regulating each other, whereas BxeR solo negatively regulated xenI2. The XenI2/R2 and BxeR solo proteins are not widespread in the Burkholderia species cluster. In conclusion, the present study represents an extensive analysis of AHL QS in the Burkholderia plant-associated cluster demonstrating both commonalities and differences, probably reflecting environmental adaptations of the various species.


Assuntos
Acil-Butirolactonas , Proteínas de Bactérias , Burkholderia/genética , Regulação Bacteriana da Expressão Gênica , Oryza/microbiologia , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Burkholderia/classificação , Burkholderia/crescimento & desenvolvimento , Burkholderia/metabolismo , Dados de Sequência Molecular , Percepção de Quorum/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie
9.
Phytopathology ; 100(3): 262-70, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20128700

RESUMO

Chorismate mutase (CM) is a key enzyme in the shikimate pathway which is responsible for the synthesis of aromatic amino acids. There are two classes of CMs, AroQ and AroH, and several pathogenic bacteria have been reported to possess a subgroup of CMs designated AroQ(gamma). These CMs are usually exported to the periplasm or outside the cell; in a few cases, they have been reported to be involved in virulence and their precise role is currently unknown. Here, we report that the important rice pathogen Xanthomonas oryzae pv. oryzae XKK.12 produces an AroQ(gamma) CM which we have purified and characterized from spent supernatants. This enzyme is synthesized in planta and X. oryzae pv. oryzae knock-out mutants are hypervirulent to rice. The role of this enzyme in X. oryzae pv. oryzae rice virulence is discussed.


Assuntos
Corismato Mutase/classificação , Corismato Mutase/metabolismo , Oryza/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/enzimologia , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Folhas de Planta/microbiologia , Virulência
10.
Front Microbiol ; 10: 2695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849865

RESUMO

Many Burkholderia spp. produce in vitro secondary metabolites with relevant biological activities and potential practical applications. Burkholderia gladioli pv. agaricicola (Bga) possess promising biological activities regulated by N-Acyl homoserine lactones (N.AHLs) based quorum sensing (QS) mechanism. In the current study, N.AHLs-deficient (ICMP11096glad-I) and N.AHLs-complemented (ICMP11096glad-IR) mutants were constructed in which the gene coding for AHL synthase was inactivated by allelic exchange in glad I mutant strain. The aims of this research were to (i) assess the antagonistic activity of the wild type (WT) and the glad-I mutant of Bga against Bacillus megaterium (G+ve) and Escherichia coli (G-ve), (ii) screen their hydrolytic enzymes and hemolytic substances, (iii) monitor the pathogenic effect against Agaricus bisporus, and finally (iv) analyze the bioactive secondary metabolites produced by WT and mutant strain using high performance liquid chromatography (HPLC). Results showed that N.AHLs-deficient mutant exhibited high reduction of antagonistic activity against the tested microorganisms and notable reduction of chitinolytic, proteolytic and glucanolytic activities and complete absence of hemolytic activity, and the glad-IR complemented mutant was able to regain the major part of these activities. Furthermore, N.AHLs-deficient mutant strain was unable to degrade flesh cubes pseudo-tissues of A. bisporus. On the other hand, the virulence effect of complemented mutant was like to the parental WT strain. HPLC analysis revealed that some of the single components produced by WT strain were absent in N.AHLs-deficient mutant and others were highly reduced. The out-findings of the current research gave a spot into the regulatory role of N.AHLs and QS phenomenon in the biological activity of Bga bacterium.

11.
FEMS Microbiol Lett ; 366(12)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271427

RESUMO

Many plant bacterial pathogens monitor their group behaviour and their population density via production of N-acyl homoserine lactone signals which regulate the expression of several genes via the LuxI/R homologs. This regulatory network, termed quorum sensing (QS), is present in the soybean bacterial pathogen Pseudomonas savastanoi pv glycinea (Psg). The sequenced genomes of two strains of Psg, race 4 and B076, contain an N-acyl homoserine lactone (AHL) based LuxI/R QS system named AhlI/R. While studying the QS system of Psg strains race 4 and B076 isolated in USA, LMG5066 in New Zealand and IBSBF355 in Brazil, we found that B076, LMG5066 and IBSBF355 possess a point mutation in the ahlR gene that causes a frameshift resulting in a truncated AhlR protein. Psg race 4 does not possess the mutation in ahlR and the QS system is functional. The same mutation in the ahlR gene was found to be also present in 9 of 19 Psg strains isolated from diseased soybean in Illinois. Phenotypic analysis of strains showed that swarming motility is repressed whereas phosphate solubilisation was activated by QS in Psg. Analysing the secretome, we also found that four proteins were under QS regulation.


Assuntos
Glycine max/microbiologia , Mutação Puntual/genética , Pseudomonas/genética , Pseudomonas/patogenicidade , Percepção de Quorum/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Percepção de Quorum/genética
12.
Mol Plant Pathol ; 20(5): 716-730, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912619

RESUMO

In a number of compatible plant-bacterium interactions, a rise in apoplastic Ca2+ levels is observed, suggesting that Ca2+ represents an important environmental clue, as reported for bacteria infecting mammalians. We demonstrate that Ca2+ entry in Pseudomonas savastanoi pv. savastanoi (Psav) strain DAPP-PG 722 is mediated by a Na+ /Ca2+ exchanger critical for virulence. Using the fluorescent Ca2+ probe Fura 2-AM, we demonstrate that Ca2+ enters Psav cells foremost when they experience low levels of energy, a situation mimicking the apoplastic fluid. In fact, Ca2+ entry was suppressed in the presence of high concentrations of glucose, fructose, sucrose or adenosine triphosphate (ATP). Since Ca2+ entry was inhibited by nifedipine and LiCl, we conclude that the channel for Ca2+ entry is a Na+ /Ca2+ exchanger. In silico analysis of the Psav DAPP-PG 722 genome revealed the presence of a single gene coding for a Na+ /Ca2+ exchanger (cneA), which is a widely conserved and ancestral gene within the P. syringae complex based on gene phylogeny. Mutation of cneA compromised not only Ca2+ entry, but also compromised the Hypersensitive response (HR) in tobacco leaves and blocked the ability to induce knots in olive stems. The expression of both pathogenicity (hrpL, hrpA and iaaM) and virulence (ptz) genes was reduced in this Psav-cneA mutant. Complementation of the Psav-cneA mutation restored both Ca2+ entry and pathogenicity in olive plants, but failed to restore the HR in tobacco leaves. In conclusion, Ca2+ entry acts as a 'host signal' that allows and promotes Psav pathogenicity on olive plants.


Assuntos
Proteínas de Bactérias/metabolismo , Olea/microbiologia , Pseudomonas/patogenicidade , Trocador de Sódio e Cálcio/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cálcio/metabolismo , Cromossomos Bacterianos/genética , Citosol/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Mutação/genética , Olea/efeitos dos fármacos , Fenótipo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas/efeitos dos fármacos , Nicotiana/microbiologia , Virulência/efeitos dos fármacos
13.
FEMS Microbiol Ecol ; 65(2): 251-62, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18631177

RESUMO

Burkholderia glumae is an emerging seed-borne rice pathogen in many areas around the world. Previous studies have demonstrated that B. glumae produces two major virulence factors: the phytotoxin toxoflavin and a secreted lipase. This synthesis of both of these factors is regulated by an N-acyl homoserine lactone (AHL)-dependent, cell-density-dependent quorum-sensing regulation system. This study reports the production and secretion of two highly similar endo-polygalacturonases (designated PehA and PehB) by B. glumae. The two enzymes were purified to homogeneity and the corresponding genetic determinants were identified and characterized. When either polygalacturonase gene was inactivated, B. glumae retained rice virulence comparable to that of the wild-type parent strain. Furthermore, the role of AHL-dependent quorum sensing and of plant cell wall degradation compounds in their regulation was investigated.


Assuntos
Burkholderia/enzimologia , Regulação Bacteriana da Expressão Gênica , Oryza/microbiologia , Doenças das Plantas/microbiologia , Poligalacturonase , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Burkholderia/genética , Burkholderia/crescimento & desenvolvimento , Burkholderia/patogenicidade , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Poligalacturonase/química , Poligalacturonase/genética , Poligalacturonase/isolamento & purificação , Poligalacturonase/metabolismo , Percepção de Quorum , Alinhamento de Sequência , Análise de Sequência de DNA
14.
J Microbiol Methods ; 73(3): 273-5, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18420295

RESUMO

Eight luxI-family gene promoters (luxI, cviI, ahlI, rhlI, cepI, phzI, traI and ppuI) were cloned in tandem, upstream a promoterless lacZ gene in a promoter probe vector yielding pMULTIAHLPROM. This unique construct is useful in determining whether a bacterial strain not producing N-acyl homoserine lactone signal molecules (AHLs) possesses orphan LuxR type proteins able to respond to AHLs and activate transcription from quorum sensing target genes. Using pMULTIAHLPROM, it was demonstrated that Enterobacter aerogenes possibly contains a LuxR-family orphan able to activate luxI-family promoters independently from AHLs.


Assuntos
Técnicas Biossensoriais/métodos , Enterobacter aerogenes/fisiologia , Percepção de Quorum , Acil-Butirolactonas/metabolismo , Fusão Gênica Artificial , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Plasmídeos , Análise de Sequência de DNA , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
15.
Nucleic Acids Res ; 34(1): 243-53, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16414955

RESUMO

Adducins are a family of membrane skeleton proteins composed of alpha-, beta- and gamma-subunits that promote actin and spectrin association in erythrocytes. The alpha- and gamma-subunits are expressed ubiquitously, while the beta-subunit is found in brain and erythropoietic tissues. The brain beta-adducin protein is similar in size to that of spleen, but the mRNA transcript is a brain-specific one that has not been yet characterized, having an estimated length of 8-9 kb instead of the 3-4 kb of spleen mRNA. Here, we show the molecular basis for these differences by determining the structure of the brain-specific beta-adducin transcript in rats, mice and humans. We identified a brain-specific promoter in rodents that, apparently, was not conserved in humans. In addition, we present evidence that the brain-mRNAs are formed by a common mechanism consisting in the tissue-specific use of alternative polyadenylation sites generating unusually long 3'-untranslated region of up to 6.6 kb. This hypothesis is supported by the presence of highly-conserved regions flanking the brain-specific polyadenylation site that suggest the involvement of these sequences in the translational regulation, stability and/or subcellular localization of the beta-adducin transcript in the brain.


Assuntos
Regiões 3' não Traduzidas/química , Encéfalo/metabolismo , Proteínas de Ligação a Calmodulina/genética , Poliadenilação , Regiões Promotoras Genéticas , Precursores de RNA/química , Regiões 5' não Traduzidas/química , Animais , Sequência de Bases , Proteínas de Ligação a Calmodulina/metabolismo , Sequência Conservada , Éxons , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Precursores de RNA/biossíntese , RNA Mensageiro/biossíntese , RNA Mensageiro/química , Ratos , Ratos Sprague-Dawley , Baço/metabolismo
16.
FEMS Microbiol Lett ; 269(2): 213-20, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17227455

RESUMO

Gram-negative bacteria most often use N-acyl homoserine lactones (AHLs) as intercellular quorum-sensing signal molecules. In this study, it was demonstrated that rice plants contain AHL mimic molecules that are very sensitive to the highly specific AiiA lactonase enzyme and can activate three different AHL bacterial biosensors, indicating that the compounds have a homoserine lactone structure and could be AHLs. The possible source and biological significance of this finding are discussed.


Assuntos
4-Butirolactona/análogos & derivados , Metaloendopeptidases/metabolismo , Oryza/química , Oryza/microbiologia , Percepção de Quorum , Transdução de Sinais , 4-Butirolactona/metabolismo , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Oryza/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo
17.
Methods Mol Biol ; 1610: 297-314, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439871

RESUMO

The life cycle of bacterial phytopathogens consists of a benign epiphytic phase, during which the bacteria grow in the soil or on the plant surface, and a virulent endophytic phase involving the penetration of host defenses and the colonization of plant tissues. Innovative strategies are urgently required to integrate copper treatments that control the epiphytic phase with complementary tools that control the virulent endophytic phase, thus reducing the quantity of chemicals applied to economically and ecologically acceptable levels. Such strategies include targeted treatments that weaken bacterial pathogens, particularly those inhibiting early infection steps rather than tackling established infections. This chapter describes a reporter gene-based chemical genomic high-throughput screen for the induction of bacterial virulence by plant molecules. Specifically, we describe a chemical genomic screening method to identify agonist and antagonist molecules for the induction of targeted bacterial virulence genes by plant extracts, focusing on the experimental controls required to avoid false positives and thus ensuring the results are reliable and reproducible.


Assuntos
Bactérias/metabolismo , Bactérias/patogenicidade , Plantas/metabolismo , Plantas/microbiologia , Doenças das Plantas/microbiologia , Virulência
18.
Front Microbiol ; 8: 349, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326068

RESUMO

In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.

19.
Nat Genet ; 50(1): 138-150, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255260

RESUMO

Plants intimately associate with diverse bacteria. Plant-associated bacteria have ostensibly evolved genes that enable them to adapt to plant environments. However, the identities of such genes are mostly unknown, and their functions are poorly characterized. We sequenced 484 genomes of bacterial isolates from roots of Brassicaceae, poplar, and maize. We then compared 3,837 bacterial genomes to identify thousands of plant-associated gene clusters. Genomes of plant-associated bacteria encode more carbohydrate metabolism functions and fewer mobile elements than related non-plant-associated genomes do. We experimentally validated candidates from two sets of plant-associated genes: one involved in plant colonization, and the other serving in microbe-microbe competition between plant-associated bacteria. We also identified 64 plant-associated protein domains that potentially mimic plant domains; some are shared with plant-associated fungi and oomycetes. This work expands the genome-based understanding of plant-microbe interactions and provides potential leads for efficient and sustainable agriculture through microbiome engineering.


Assuntos
Adaptação Fisiológica , Bactérias/genética , Genoma Bacteriano , Genômica , Interações Hospedeiro-Patógeno/genética , Plantas/microbiologia , Bactérias/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Simbiose
20.
FEMS Microbiol Lett ; 259(1): 106-12, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16684109

RESUMO

Burkholderia plantarii is a plant pathogen responsible for causing rice seedling blight. The molecular mechanisms responsible for this pathogenicity are currently unknown. In this study, we report the identification and characterization of N-acyl homoserine lactone quorum sensing and the stationary phase RpoS sigma factor of B. plantarii. Both global regulatory systems are involved in causing rice seedling blight. This is the first report of gene regulators of B. plantarii implicated in the disease.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia/crescimento & desenvolvimento , Burkholderia/patogenicidade , Regulação Bacteriana da Expressão Gênica , Oryza/microbiologia , Plântula/microbiologia , Fator sigma/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Burkholderia/genética , Oryza/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Plântula/crescimento & desenvolvimento , Fator sigma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA