Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ACS Omega ; 3(2): 2049-2057, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458514

RESUMO

This article presents a magnetically actuated two-way, three-position (+, 0, -), paper-based microfluidic valve that includes a neutral position (0)-the first of its kind. The system is highly robust, customizable, and fully automated. The advent of a neutral position and the ability to precisely control switching frequencies establish a new platform for highly controlled fluid flows in paper-based wicking microfluidic devices. The potential utility of these valves is demonstrated in automated, programmed, patterning of dyed liquids in a wicking device akin to a colorimetric assay but with a programmed fluid/reagent delivery. These valves are fabricated using facile methods and thus remain cost-effective for adoption into affordable point-of-care/bioanalytical devices.

2.
Sci Rep ; 8(1): 1464, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362476

RESUMO

Cells are able to sense and react to their physical environment by translating a mechanical cue into an intracellular biochemical signal that triggers biological and mechanical responses. This process, called mechanotransduction, controls essential cellular functions such as proliferation and migration. The cellular response to an external mechanical stimulation has been investigated with various static and dynamic systems, so far limited to global deformations or to local stimulation through discrete substrates. To apply local and dynamic mechanical constraints at the single cell scale through a continuous surface, we have developed and modelled magneto-active substrates made of magnetic micro-pillars embedded in an elastomer. Constrained and unconstrained substrates are analysed to map surface stress resulting from the magnetic actuation of the micro-pillars and the adherent cells. These substrates have a rigidity in the range of cell matrices, and the magnetic micro-pillars generate local forces in the range of cellular forces, both in traction and compression. As an application, we followed the protrusive activity of cells subjected to dynamic stimulations. Our magneto-active substrates thus represent a new tool to study mechanotransduction in single cells, and complement existing techniques by exerting a local and dynamic stimulation, traction and compression, through a continuous soft substrate.


Assuntos
Ferro/farmacologia , Mecanotransdução Celular , Análise de Célula Única/métodos , Estresse Mecânico , Animais , Adesão Celular , Movimento Celular , Proliferação de Células , Fenômenos Magnéticos , Camundongos , Células NIH 3T3 , Propriedades de Superfície
3.
Bioanalysis ; 9(6): 517-526, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28225302

RESUMO

AIM: We present a fast magnetic immunoassay, combining magnetic nanoparticles and micromagnets. High magnetic field gradients from micromagnets are used to develop a new approach to the standard ELISA. Materials & methods/results: A proof-of-concept based on colorimetric quantification of antiovalbumin antibody in buffer is performed and compared with an ELISA. After optimization, the magnetic immunoassay exhibits a limit of detection (40 ng/ml) and a dynamic range (40-2500 ng/ml) similar to that of ELISAs developed using same biochemical tools. CONCLUSION: Micromagnets can be fully integrated in multiwell plates at low cost to allow the efficient capture of immunocomplexes carried by magnetic nanoparticles. The method is generic and permits to perform magnetic ELISA in 30 min.


Assuntos
Anticorpos Monoclonais/análise , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Imãs/química , Nanopartículas/química , Ovalbumina/análise , Técnicas Biossensoriais/instrumentação , Colorimetria/métodos , Ensaio de Imunoadsorção Enzimática , Imunoensaio/instrumentação , Limite de Detecção , Campos Magnéticos , Ovalbumina/imunologia
4.
Integr Biol (Camb) ; 8(11): 1099-1110, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27738682

RESUMO

Intracellular and extracellular mechanical forces play a crucial role during tissue growth, modulating nuclear shape and function and resulting in complex collective cell behaviour. However, the mechanistic understanding of how the orientation, shape, symmetry and homogeneity of cells are affected by environmental geometry is still lacking. Here we investigate cooperative cell behaviour and patterns under geometric constraints created by topographically patterned substrates. We show how cells cooperatively adopt their geometry, shape, positioning of the nucleus and subsequent proliferation activity. Our findings indicate that geometric constraints induce significant squeezing of cells and nuclei, cytoskeleton reorganization, drastic condensation of chromatin resulting in a change in the cell proliferation rate and the anisotropic growth of cultures. Altogether, this work not only demonstrates complex non-trivial collective cellular responses to geometrical constraints but also provides a tentative explanation of the observed cell culture patterns grown on different topographically patterned substrates. These findings provide important fundamental knowledge, which could serve as a basis for better controlled tissue growth and cell-engineering applications.


Assuntos
Comunicação Celular/fisiologia , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Proliferação de Células/fisiologia , Tamanho Celular , Mecanotransdução Celular/fisiologia , Modelos Biológicos , Simulação por Computador , Células Hep G2 , Humanos
5.
Sci Rep ; 6: 27159, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27263660

RESUMO

Local polarization of a magnetic layer, a well-known method for storing information, has found its place in numerous applications such as the popular magnetic drawing board toy or the widespread credit cards and computer hard drives. Here we experimentally show that a similar principle can be applied for imprinting the trajectory of quantum units of flux (vortices), travelling in a superconducting film (Nb), into a soft magnetic layer of permalloy (Py). In full analogy with the magnetic drawing board, vortices act as tiny magnetic scribers leaving a wake of polarized magnetic media in the Py board. The mutual interaction between superconducting vortices and ferromagnetic domains has been investigated by the magneto-optical imaging technique. For thick Py layers, the stripe magnetic domain pattern guides both the smooth magnetic flux penetration as well as the abrupt vortex avalanches in the Nb film. It is however in thin Py layers without stripe domains where superconducting vortices leave the clearest imprints of locally polarized magnetic moment along their paths. In all cases, we observe that the flux is delayed at the border of the magnetic layer. Our findings open the quest for optimizing magnetic recording of superconducting vortex trajectories.

6.
Cryst Growth Des ; 15(2): 587-592, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25674041

RESUMO

The structural analysis of GaN and Al x Ga1-x N/GaN heterostructures grown by metalorganic vapor phase epitaxy in the presence of Mn reveals how Mn affects the growth process and in particular, the incorporation of Al, the morphology of the surface, and the plastic relaxation of Al x Ga1-x N on GaN. Moreover, the doping with Mn promotes the formation of layered Al x Ga1-x N/GaN superlattice-like heterostructures, which opens wide perspectives for controlling the segregation of ternary alloys during the crystal growth and for fostering the self-assembling of functional layered structures.

7.
Sci Rep ; 2: 722, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056914

RESUMO

Owing to the variety of possible charge and spin states and to the different ways of coupling to the environment, paramagnetic centres in wide band-gap semiconductors and insulators exhibit a strikingly rich spectrum of properties and functionalities, exploited in commercial light emitters and proposed for applications in quantum information. Here we demonstrate, by combining synchrotron techniques with magnetic, optical and ab initio studies, that the codoping of GaN:Mn with Mg allows to control the Mn(n+) charge and spin state in the range 3≤n≤5 and 2≥S≥1. According to our results, this outstanding degree of tunability arises from the formation of hitherto concealed cation complexes Mn-Mg(k), where the number of ligands k is pre-defined by fabrication conditions. The properties of these complexes allow to extend towards the infrared the already remarkable optical capabilities of nitrides, open to solotronics functionalities, and generally represent a fresh perspective for magnetic semiconductors.

8.
Nat Mater ; 5(8): 653-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16845420

RESUMO

The emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix. The average diameter of these nanocolumns is 3nm and their spacing is 10nm. Their composition is close to Ge(2)Mn, which corresponds to an unknown germanium-rich phase, and they have a uniaxially elongated diamond structure. Their Curie temperature is higher than 400K. Magnetotransport reveals a pronounced anomalous Hall effect up to room temperature. A giant positive magnetoresistance is measured from 7,000% at 30K to 200% at 300K and 9T, with no evidence of saturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA