Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 172(1): 341-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27436829

RESUMO

Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens.


Assuntos
Alérgenos/genética , Arabidopsis/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas/genética , Pólen/genética , Alérgenos/classificação , Alérgenos/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta/genética , Humanos , Oryza/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/metabolismo , Pólen/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
2.
Front Artif Intell ; 6: 1173099, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304524

RESUMO

Among myriad complex challenges facing educational institutions in this era of a rapidly evolving job marketplace is the development of career self-efficacy among students. Self-efficacy has traditionally been understood to be developed through the direct experience of competence, the vicarious experience of competence, social persuasion, and physiological cues. These four factors, and particularly the first two, are difficult to build into education and training programs in a context where changing skills make the specific meaning of graduate competence largely unknown and, notwithstanding the other contributions in this collection, largely unknowable. In response, in this paper we argue for a working metacognitive model of career self-efficacy that will prepare students with the skills needed to evaluate their skills, attitudes and values and then adapt and develop them as their career context evolves around them. The model we will present is one of evolving complex sub-systems within an emergent milieu. In identifying various contributing factors, the model provides specific cognitive and affective constructs as important targets for actionable learning analytics for career development.

3.
Biotechnol Adv ; 35(5): 545-556, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28535924

RESUMO

Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses.


Assuntos
Alérgenos/imunologia , Engenharia Genética , Hipersensibilidade/prevenção & controle , Pólen/genética , Alérgenos/toxicidade , Sequência de Aminoácidos/genética , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Proteínas de Plantas/imunologia , Poaceae/genética , Poaceae/imunologia , Pólen/imunologia
4.
Front Plant Sci ; 6: 1102, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734020

RESUMO

The ribosome in higher eukaryotes is a large macromolecular complex composed of four rRNAs and eighty different ribosomal proteins. In plants, each ribosomal protein is encoded by multiple genes. Duplicate genes within a family are often necessary to provide a threshold dose of a ribosomal protein but in some instances appear to have non-redundant functions. Here, we addressed whether divergent members of the RPL9 gene family are dosage sensitive or whether these genes have non-overlapping functions. The RPL9 family in Arabidopsis thaliana comprises two nearly identical members, RPL9B and RPL9C, and a more divergent member, RPL9D. Mutations in RPL9C and RPL9D genes lead to delayed growth early in development, and loss of both genes is embryo lethal, indicating that these are dosage-sensitive and redundant genes. Phylogenetic analysis of RPL9 as well as RPL4, RPL5, RPL27a, RPL36a, and RPS6 family genes in the Brassicaceae indicated that multicopy ribosomal protein genes have been largely retained following whole genome duplication. However, these gene families also show instances of tandem duplication, small scale deletion, and evidence of gene conversion. Furthermore, phylogenetic analysis of RPL9 genes in angiosperm species showed that genes within a species are more closely related to each other than to RPL9 genes in other species, suggesting ribosomal protein genes undergo convergent evolution. Our analysis indicates that ribosomal protein gene retention following whole genome duplication contributes to the number of genes in a family. However, small scale rearrangements influence copy number and likely drive concerted evolution of these dosage-sensitive genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA