Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 82: 406-421, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31525508

RESUMO

The establishment and validation of reliable induced pluripotent stem cell (iPSC)-derived in vitro models to study microglia and monocyte/macrophage immune function holds great potential for fundamental and translational neuro-immunology research. In this study, we first demonstrate that ramified CX3CR1+ iPSC-microglia (cultured within a neural environment) and round-shaped CX3CR1- iPSC-macrophages can easily be differentiated from newly established murine CX3CR1eGFP/+CCR2RFP/+ iPSC lines. Furthermore, we show that obtained murine iPSC-microglia and iPSC-macrophages are distinct cell populations, even though iPSC-macrophages may upregulate CX3CR1 expression when cultured within a neural environment. Next, we characterized the phenotypical and functional properties of murine iPSC-microglia and iPSC-macrophages following classical and alternative immune polarisation. While iPSC-macrophages could easily be triggered to adopt a classically-activated or alternatively-activated phenotype following, respectively, lipopolysaccharide + interferon γ or interleukin 13 (IL13) stimulation, iPSC-microglia and iPSC-macrophages cultured within a neural environment displayed a more moderate activation profile as characterised by the absence of MHCII expression upon classical immune polarisation and the absence of Ym1 expression upon alternative immune polarisation. Finally, extending our preceding in vivo studies, this striking phenotypical divergence was also observed for resident microglia and infiltrating monocytes within highly inflammatory cortical lesions in CX3CR1eGFP/+CCR2RFP/+ mice subjected to middle cerebral arterial occlusion (MCAO) stroke and following IL13-mediated therapeutic intervention thereon. In conclusion, our study demonstrates that the applied murine iPSC-microglia and iPSC-macrophage culture models are able to recapitulate in vivo microglia and monocyte/macrophage ontogeny and corresponding phenotypical/functional properties upon classical and alternative immune polarisation, and therefore represent a valuable in vitro platform to further study and modulate microglia and (infiltrating) monocyte immune responses under neuro-inflammatory conditions within a neural environment.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuroimunomodulação/fisiologia , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Células-Tronco Pluripotentes Induzidas/fisiologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Neuroimunomodulação/imunologia , Fenótipo , Receptores CCR2/metabolismo
2.
Phys Chem Chem Phys ; 21(8): 4117-4121, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724274

RESUMO

Cold atmospheric plasma in contact with solutions has many applications, but its chemistry contains many unknowns such as the undescribed reactions with solutes. By combining experiments and modelling, we report the first direct demonstration of the reaction of chloride with oxygen atoms in aqueous solutions exposed to cold plasma.

3.
Anal Biochem ; 543: 62-70, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29203135

RESUMO

Globins are among the best investigated proteins in biological and medical sciences and represent a prime tool for the study of the evolution of genes and the structure-function relationship of proteins. Here, we explore the recombinant expression of globins in three different expression systems: Escherichia coli, Pichia pastoris and the baculovirus infected Spodoptera frugiperda. We expressed two different human globin types in these three expression systems: I) the well-characterized neuroglobin and II) the uncharacterized, circular permutated globin domain of the large chimeric globin androglobin. It is clear from the literature that E.coli is the most used expression system for expression and purification of recombinant globins. However, the major disadvantage of E. coli is the formation of insoluble aggregates. We experienced that, for more complex multi-domain globins, like the chimeric globin androglobin, it is recommended to switch to a higher eukaryotic expression system.


Assuntos
Escherichia coli/genética , Globinas/genética , Pichia/genética , Reação em Cadeia da Polimerase em Tempo Real , Spodoptera/genética , Animais , Perfilação da Expressão Gênica , Humanos , Proteínas Recombinantes/genética
4.
Reprod Biomed Online ; 36(3): 327-339, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29336995

RESUMO

Infertility affects approximately 15% of the couples wanting to conceive. In 30 - 40% of the cases the aetiology of male infertility remains unknown and is called idiopathic male infertility. When assisted reproductive technologies are used to obtain pregnancy, an adequate (epi)genetic diagnosis of male infertility is of major importance to evaluate if a genetic abnormality will be transmitted to the offspring. In addition, there is need for better diagnostic seminal biomarkers to assess the success rates of these assisted reproductive technologies. This review investigated the possible causes and molecular mechanisms underlying male idiopathic infertility by extensive literature searches of: (i) causal gene mutations; (ii) proteome studies of spermatozoa from idiopathic infertile men;(iii) the role of epigenetics; (iv) post-translational modifications; and (v) sperm DNA fragmentation in infertile men. In conclusion, male infertility is a complex, multi-factorial disorder and the underlying causes often remain unknown. Further research on the (epi)genetic and molecular defects in spermatogenesis and sperm function is necessary to improve the diagnosis and to develop more personalized treatments of men with idiopathic infertility.


Assuntos
Epigenômica , Infertilidade Masculina/fisiopatologia , Mutação , Proteoma/análise , Espermatogênese , Animais , Humanos , Masculino
5.
Heart Vessels ; 33(1): 80-88, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098407

RESUMO

Neuroglobin (NGB) is an oxygen-binding protein that is mainly expressed in nervous tissues where it is considered to be neuroprotective during ischemic brain injury. Interestingly, transgenic mice overexpressing NGB reveal cytoprotective effects on tissues lacking endogenous NGB, which might indicate a therapeutic role for NGB in a broad range of ischemic conditions. In the present study, we investigated the effect of NGB overexpression on survival as well as on the size and occurrence of myocardial infarctions (MI) in a mouse model of acute MI (AMI) and a model of advanced atherosclerosis (ApoE -/- Fbn1 C1039G+/- mice), in which coronary plaques and MI develop in mice being fed a Western-type diet. Overexpression of NGB significantly enhanced post-AMI survival and reduced MI size by 14% 1 week after AMI. Gene expression analysis of the infarction border showed reduction of tissue hypoxia and attenuation of hypoxia-induced inflammatory pathways, which might be responsible for these beneficial effects. In contrast, NGB overexpression did not affect survival or occurrence of MI in the atherosclerotic mice although the incidence of coronary plaques was significantly reduced. In conclusion, NGB proved to act cytoprotectively during MI in the acute setting while this effect was less pronounced in the atherosclerosis model.


Assuntos
Citoproteção/genética , Regulação da Expressão Gênica , Globinas/genética , Isquemia Miocárdica/genética , Miocárdio/patologia , Proteínas do Tecido Nervoso/genética , RNA/genética , Doença Aguda , Animais , Doença Crônica , Modelos Animais de Doenças , Globinas/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Neuroglobina , Estresse Oxidativo , Reação em Cadeia da Polimerase em Tempo Real
6.
J Biol Chem ; 291(36): 18959-66, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27402851

RESUMO

The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe(3+)) and ferrous (Fe(2+)) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example, in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.


Assuntos
Globinas/química , Proteínas do Tecido Nervoso/química , Óxido Nítrico/química , Oxigenases/química , Técnicas Eletroquímicas , Eletrodos , Globinas/metabolismo , Humanos , Cinética , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Óxido Nítrico/metabolismo , Oxirredução , Oxigenases/metabolismo
7.
Biochim Biophys Acta ; 1864(7): 835-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27083533

RESUMO

Biofilm-associated infections are hard to treat because of their high antibiotic resistance and the presence of a very persistent subpopulation of bacteria. The second messenger molecule cyclic di-guanosine monophosphate (c-di-GMP) plays a very important role in this biofilm physiology. Here, we evaluated the role of YddV, an enzyme with a c-di-GMP synthesis function, in the formation and maturation of Escherichia coli biofilms. Our results suggest that YddV stimulates biofilm growth via its role in the production of c-di-GMP and this likely by influencing the production of matrix (e.g. poly-N-acetylglucosamine (PGA)). However, lowering the YddV expression did not alter the biofilm formation since there was no significant difference between the biofilm phenotypes of WT E. coli and YddV-knockout bacteria. Additionally, YddV expression had no significant influence on the amount of persister cells within the biofilm population, questioning the use of YddV as therapeutic target.


Assuntos
Biofilmes , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Fósforo-Oxigênio Liases/fisiologia , GMP Cíclico/análogos & derivados , GMP Cíclico/biossíntese
8.
J Biol Chem ; 290(16): 10336-52, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25666609

RESUMO

We report the structural and biochemical characterization of GLB-33, a putative neuropeptide receptor that is exclusively expressed in the nervous system of the nematode Caenorhabditis elegans. This unique chimeric protein is composed of a 7-transmembrane domain (7TM), GLB-33 7TM, typical of a G-protein-coupled receptor, and of a globin domain (GD), GLB-33 GD. Comprehensive sequence similarity searches in the genome of the parasitic nematode, Ascaris suum, revealed a chimeric protein that is similar to a Phe-Met-Arg-Phe-amide neuropeptide receptor. The three-dimensional structures of the separate domains of both species and of the full-length proteins were modeled. The 7TM domains of both proteins appeared very similar, but the globin domain of the A. suum receptor surprisingly seemed to lack several helices, suggesting a novel truncated globin fold. The globin domain of C. elegans GLB-33, however, was very similar to a genuine myoglobin-type molecule. Spectroscopic analysis of the recombinant GLB-33 GD showed that the heme is pentacoordinate when ferrous and in the hydroxide-ligated form when ferric, even at neutral pH. Flash-photolysis experiments showed overall fast biphasic CO rebinding kinetics. In its ferrous deoxy form, GLB-33 GD is capable of reversibly binding O2 with a very high affinity and of reducing nitrite to nitric oxide faster than other globins. Collectively, these properties suggest that the globin domain of GLB-33 may serve as a highly sensitive oxygen sensor and/or as a nitrite reductase. Both properties are potentially able to modulate the neuropeptide sensitivity of the neuronal transmembrane receptor.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Globinas/química , Mioglobina/química , Nitrito Redutases/química , Oxigênio/metabolismo , Receptores de Neuropeptídeos/química , Sequência de Aminoácidos , Animais , Ascaris suum/genética , Ascaris suum/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expressão Gênica , Globinas/genética , Globinas/metabolismo , Heme/química , Heme/metabolismo , Concentração de Íons de Hidrogênio , Ferro/química , Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mioglobina/genética , Mioglobina/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
9.
Biochim Biophys Acta ; 1854(10 Pt A): 1307-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26004089

RESUMO

In this project, we studied some physicochemical properties of two different globin domains of the polymeric hemoglobin of the brine shrimp Artemia salina and compared them with those of the native molecule. Two domains (AsHbC1D1 and AsHbC1D5) were cloned and expressed in BL21(DE3)pLysS strain of Escherichia coli. The recombinant proteins as well as the native hemoglobin (AfHb) were purified from bacteria and frozen Artemia, respectively by standard chromatographic methods and assessed by SDS-PAGE. The heme environment of these proteins was studied by optical spectroscopy and ligand-binding kinetics (e.g. CO association and O2 binding affinity) were measured for the two recombinant proteins and the native hemoglobin. This indicates that the CO association rate for AsHbC1D1 is higher than that of AsHbC1D5 and AfHb, while the calculated P50 value for AsHbC1D1 is lower than that of AsHbC1D5 and AfHb. The geminate and bimolecular rebinding parameters indicate a significant difference between both domains. Moreover, EPR results showed that the heme pocket in AfHb is in a more closed conformation than the heme pocket in myoglobin. Finally, the reduction potential of -0.13V versus the standard hydrogen electrode was determined for AfHb by direct electrochemical measurements. It is about 0.06V higher than the potential of the single domain AsHbC1D5. This work shows that each domain in the hemoglobin of Artemia has different characteristics of ligand binding.


Assuntos
Artemia/química , Proteínas de Artrópodes/química , Monóxido de Carbono/química , Heme/química , Hemoglobinas/química , Oxigênio/química , Sequência de Aminoácidos , Animais , Artemia/metabolismo , Proteínas de Artrópodes/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Hemoglobinas/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Polimerização , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Termodinâmica
10.
Biochim Biophys Acta ; 1834(9): 1764-71, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23612353

RESUMO

Neuroglobin (Ngb), a neuron-specific heme-binding protein that binds O2, CO and NO reversibly, and promotes in vivo and in vitro cell survival after hypoxic and ischaemic insult. Although the mechanisms of this neuroprotection remain unknown, Ngb might play an important role in counteracting the adverse effects of ischaemic stroke and cerebral hypoxia. Several Ngb overexpressing mouse models have confirmed this hypothesis; however, these models were not yet exposed to in-depth behavioural characterisations. To investigate the potential changes in behaviour due to Ngb overexpression, heterozygous mice and wild type (WT) littermates were subjected to a series of cognitive and behavioural tests (i.e., the SHIRPA primary screening, the hidden-platform Morris water maze, passive avoidance learning, 47h cage activity, open field exploration, a dark-light transition box, an accelerating rotarod, a stationary beam, a wire suspension task and a gait test) under normoxic and hypoxic conditions. No significant behavioural differences were found between WT and Ngb-overexpressing mice at three months old. However, one-year-old Ngb-overexpressing mice travelled more distance on the stationary beam compared with WT littermates. This result shows that the constitutive overexpression of Ngb might counteract the endogenous decrease of Ngb in crucial brain regions such as the cerebellum, thereby counteracting age-induced neuromotor dysfunction. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Assuntos
Comportamento Animal , Cognição/fisiologia , Globinas/fisiologia , Hipóxia , Aprendizagem em Labirinto/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Oxigênio/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neuroglobina
11.
Biochim Biophys Acta ; 1834(9): 1757-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23403147

RESUMO

Neuroglobin, a globin characterized by a bis-histidine ligation of the heme iron, has been identified in mammalian and non-mammalian vertebrates, including fish, amphibians and reptiles. In human neuroglobin, the presence of an internal disulfide bond in the CD loop (CD7-D5) is found to modulate the ligand binding through a change in the heme pocket structure. Although the neuroglobin sequences mostly display conserved Cys at positions CD7, D5 and G18/19, a number of exceptions are known. In this study, neuroglobins from amphibian (Xenopus tropicalis) and fish (Chaenocephalus aceratus, Dissostichus mawsoni and Danio rerio) are investigated using electron paramagnetic resonance and optical absorption spectroscopy. All these neuroglobins differ from human neuroglobin in their Cys-positions. It is demonstrated that if disulfide bonds are formed in fish and amphibian neuroglobins, the reduction of these bonds does not result in alteration of the heme pocket in these globins. Furthermore, it is shown that mutagenesis of the Cys residues of X. tropicalis neuroglobin influences the protein structure. The amphibian neuroglobin is also found to be more resistant to H2O2-induced denaturation than the other neuroglobins under study, although all show an overall large stability in high concentrations of this oxidant. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Assuntos
Dissulfetos/metabolismo , Globinas/metabolismo , Heme/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Cisteína/química , Cisteína/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Peixes/metabolismo , Globinas/química , Globinas/genética , Heme/química , Humanos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neuroglobina , Ligação Proteica , Dobramento de Proteína , Homologia de Sequência de Aminoácidos , Xenopus/metabolismo
12.
Biochim Biophys Acta ; 1834(9): 1813-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23485914

RESUMO

Functional and structural properties of protoglobin from Methanosarcina acetivorans, whose Cys(101)E20 residue was mutated to Ser (MaPgb*), and of mutants missing either the first 20 N-terminal amino acids (MaPgb*-ΔN20 mutant), or the first 33 N-terminal amino acids [N-terminal loop of 20 amino acids and a 13-residue Z-helix, preceding the globin fold A-helix; (MaPgb*-ΔN20Z mutant)] have been investigated. In keeping with the MaPgb*-ΔN20 mutant crystal structure, here reported at 2.0Å resolution, which shows an increased exposure of the haem propionates to the solvent, the analysis of ligand binding kinetics highlights high accessibility of ligands to the haem pocket in ferric MaPgb*-ΔN20. CO binding to ferrous MaPgb*-ΔN20 displays a marked biphasic behavior, with a fast binding process close to that observed in MaPgb* and a slow carbonylation process, characterized by a rate-limiting step. Conversely, removal of the first 33 residues induces a substantial perturbation of the overall MaPgb* structure, with loss of α-helical content and potential partial collapse of the protein chain. As such, ligand binding kinetics are characterized by very slow rates that are independent of ligand concentration, this being indicative of a high energy barrier for ligand access to the haem, possibly due to localized misfolding. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.


Assuntos
Globinas/química , Globinas/metabolismo , Heme/metabolismo , Methanosarcina/metabolismo , Carbonilação Proteica , Sequência de Aminoácidos , Azidas/química , Azidas/metabolismo , Monóxido de Carbono/metabolismo , Globinas/genética , Heme/química , Cinética , Dados de Sequência Molecular , Mutação/genética , Óxido Nítrico/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
13.
J Biol Chem ; 287(40): 33163-78, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22859299

RESUMO

Although molecular dynamics simulations suggest multiple interior pathways for O(2) entry into and exit from globins, most experiments indicate well defined single pathways. In 2001, we highlighted the effects of large-to-small amino acid replacements on rates for ligand entry and exit onto the three-dimensional structure of sperm whale myoglobin. The resultant map argued strongly for ligand movement through a short channel from the heme iron to solvent that is gated by the distal histidine (His-64(E7)) near the solvent edge of the porphyrin ring. In this work, we have applied the same mutagenesis mapping strategy to the neuronal mini-hemoglobin from Cerebratulus lacteus (CerHb), which has a large internal tunnel from the heme iron to the C-terminal ends of the E and H helices, a direction that is 180° opposite to the E7 channel. Detailed comparisons of the new CerHb map with expanded results for Mb show unambiguously that the dominant (>90%) ligand pathway in CerHb is through the internal tunnel, and the major (>75%) ligand pathway in Mb is through the E7 gate. These results demonstrate that: 1) mutagenesis mapping can identify internal pathways when they exist; 2) molecular dynamics simulations need to be refined to address discrepancies with experimental observations; and 3) alternative pathways have evolved in globins to meet specific physiological demands.


Assuntos
Hemoglobinas/química , Invertebrados/metabolismo , Mioglobina/química , Oxigênio/química , Animais , Códon , Cristalografia por Raios X/métodos , Invertebrados/genética , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Mutação , Óxido Nítrico/química , Proteínas Recombinantes/química , Solventes/química , Cachalote
14.
Mol Biol Evol ; 29(4): 1105-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22115833

RESUMO

Comparative genomic studies have led to the recent identification of several novel globin types in the Metazoa. They have revealed a surprising evolutionary diversity of functions beyond the familiar O(2) supply roles of hemoglobin and myoglobin. Here we report the discovery of a hitherto unrecognized family of proteins with a unique modular architecture, possessing an N-terminal calpain-like domain, an internal, circular permuted globin domain, and an IQ calmodulin-binding motif. Putative orthologs are present in the genomes of many metazoan taxa, including vertebrates. The calpain-like region is homologous to the catalytic domain II of the large subunit of human calpain-7. The globin domain satisfies the criteria of a myoglobin-like fold but is rearranged and split into two parts. The recombinantly expressed human globin domain exhibits an absorption spectrum characteristic of hexacoordination of the heme iron atom. Molecular evolutionary analyses indicate that this chimeric globin family is phylogenetically ancient and originated in the common ancestor to animals and choanoflagellates. In humans and mice, the gene is predominantly expressed in testis tissue, and we propose the name "androglobin" (Adgb). Expression is associated with postmeiotic stages of spermatogenesis and is insensitive to experimental hypoxia. Evidence exists for increased gene expression in fertile compared with infertile males.


Assuntos
Proteínas de Ligação a Calmodulina/biossíntese , Globinas/biossíntese , Globinas/genética , Testículo/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Calpaína/química , Calpaína/genética , Calpaína/metabolismo , Evolução Molecular , Globinas/química , Globinas/metabolismo , Humanos , Masculino , Camundongos , Dados de Sequência Molecular , Família Multigênica , Filogenia , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Testículo/metabolismo
15.
Biochem Biophys Res Commun ; 430(4): 1301-5, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23261459

RESUMO

Methanosarcina acetivorans is a strictly anaerobic non-motile methane-producing Archaea expressing protoglobin (Pgb) which might either facilitate O(2) detoxification or act as a CO sensor/supplier in methanogenesis. Unusually, M. acetivorans Pgb (MaPgb) binds preferentially O(2) rather than CO and displays anticooperativity in ligand binding. Here, kinetics and/or thermodynamics of ferric and ferrous MaPgb (MaPgb(III) and MaPgb(II), respectively) nitrosylation are reported. Data were obtained between pH 7.2 and 9.5, at 22.0 °C. Addition of NO to MaPgb(III) leads to the transient formation of MaPgb(III)-NO in equilibrium with MaPgb(II)-NO(+). In turn, MaPgb(II)-NO(+) is converted to MaPgb(II) by OH(-)-based catalysis. Then, MaPgb(II) binds NO very rapidly leading to MaPgb(II)-NO. The rate-limiting step for reductive nitrosylation of MaPgb(III) is represented by the OH(-)-mediated reduction of MaPgb(II)-NO(+) to MaPgb(II). Present results highlight the potential role of MaPgb in scavenging of reactive nitrogen and oxygen species.


Assuntos
Proteínas Arqueais/química , Globinas/química , Methanosarcina/metabolismo , Nitrogênio/química , Compostos Férricos/química , Compostos Ferrosos/química , Cinética , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Oxigênio/química , Termodinâmica
16.
Dalton Trans ; 52(10): 2976-2987, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36651272

RESUMO

Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin belonging to the same lineage of the globin superfamily as globin-coupled sensors. A putative role in the scavenging of reactive nitrogen and oxygen species has been suggested as a possible adaptation mechanism of the host organism to different gaseous environments in the course of evolution. A combination of optical absorption, electronic circular dichroism (ECD), resonance Raman (rRaman), and electron paramagnetic resonance (EPR) reveal the unusual in vitro reaction of ferric MaPgb with nitrite. In contrast to other globins, a large excess of nitrite did not induce the formation of a nitriglobin form in MaPgb. Surprisingly, the addition of nitrite in mildly acidic pH led to the formation of a stable nitric-oxide ligated ferric form of the protein (MaPgb-NO). Furthermore, the 300-700 nm ECD spectrum of ferric MaPgb is for the first time reported and discussed, showing strong differences in the Soret and Q ellipticity compared to ferric myoglobin, in line with the unusually strongly ruffled haem group of MaPgb and the related quantum-mechanical admixture of the S = 5/2 and S = 3/2 state of its ferric form. The Soret and Q ellipticity change strongly upon formation of MaPgb-NO, revealing a significant effect of the nitric-oxide ligation on the haem group and pocket. The related changes in the asymmetric pyrrole half-ring stretching vibration modes observed in the rRaman spectra give experimental support to earlier theoretical models, in which an important role of the in-plane breathing modes of the haem was predicted for the stabilization of the binding of diatomic gases to MaPgb.


Assuntos
Heme , Nitritos , Heme/química , Methanosarcina/química , Methanosarcina/metabolismo , Ligantes , Globinas/química , Globinas/metabolismo , Ferro/metabolismo , Óxido Nítrico/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica
17.
J Inorg Biochem ; 246: 112289, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354606

RESUMO

High energy consumption in the nervous system requires a continuous supply of O2. This role is assisted by proteins from the globin super-family in the nerve cells of invertebrates, where 'nerve hemoglobins' (nHbs) are mainly present at mM concentrations and exhibit oxygen affinities comparable to those of vertebrate myoglobins. To gain insight into the structural bases of this function, we report the crystal structure of nHb from the Atlantic surf clam Spisula solidissima (SsHb), previously suggested to display a bis-histidyl hexa-coordinated heme in the deoxy state, high O2 affinity, and ligand binding cooperativity when assayed in situ. The crystallized protein forms a dimer through packing of a 4-helix bundle involving helices E and F of each subunit. The SsHb 'classic' globin fold displays bis-histidyl (His71(E7) and His103(F8)) hexa-coordination of the heme-Fe atom, with structural and dynamics variations found in the inter-helix hinge regions. Molecular Dynamics simulations of both monomeric and dimeric species in the bis-histidyl hexa-coordinated, deoxy penta-coordinated, and O2-bound hexa-coordinated states reveal distinct structural rearrangements at the interface between subunits in the dimer; these would affect the magnitude of the conformational fluctuations observed between monomer and dimer, and the topology of cavities within the protein matrix and at the interface. These results point to a distal site opening mechanism allowing access of the exogenous ligand to the heme and cast hypotheses on the dimer interface structural and dynamic properties that may support ligand binding cooperativity in dimeric SsHb.


Assuntos
Spisula , Animais , Spisula/metabolismo , Ligantes , Hemoglobinas/química , Heme/química , Mioglobina , Oxigênio/metabolismo
18.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140913, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37004900

RESUMO

Out of the 34 globins in Caenorhabditis elegans, GLB-33 is a putative globin-coupled transmembrane receptor with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of electronic circular dichroism, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.


Assuntos
Caenorhabditis elegans , Globinas , Animais , Caenorhabditis elegans/metabolismo , Nitritos/metabolismo , Heme/metabolismo , Concentração de Íons de Hidrogênio
19.
J Inorg Biochem ; 238: 112063, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370505

RESUMO

The popular genetic model organism Caenorhabditis elegans (C. elegans) encodes 34 globins, whereby the few that are well-characterized show divergent properties besides the typical oxygen carrier function. Here, we present a biophysical characterization and expression analysis of C. elegans globin-3 (GLB-3). GLB-3 is predicted to exist in two isoforms and is expressed in the reproductive and nervous system. Knockout of this globin causes a 99% reduction in fertility and reduced motility. Spectroscopic analysis reveals that GLB-3 exists as a bis-histidyl-ligated low-spin form in both the ferrous and ferric heme form. A function in binding of diatomic gases is excluded on the basis of the slow CO-binding kinetics. Unlike other globins, GLB-3 is also not capable of reacting with H2O2, H2S, and nitrite. Intriguingly, not only does GLB-3 contain a high number of cysteine residues, it is also highly stable under harsh conditions (pH = 2 and high concentrations of H2O2). The resilience diminishes when the N- and C-terminal extensions are removed. Redox potentiometric measurements reveal a slightly positive redox potential (+8 ± 19 mV vs. SHE), suggesting that the heme iron may be able to oxidize cysteines. Electron paramagnetic resonance shows that formation of an intramolecular disulphide bridge, involving Cys70, affects the heme-pocket region. The results suggest an involvement of the globin in (cysteine) redox chemistry.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Globinas/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Heme/química , Sistema Nervoso/metabolismo
20.
J Biol Chem ; 286(7): 5347-58, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21147768

RESUMO

The large apolar tunnel traversing the mini-hemoglobin from Cerebratulus lacteus (CerHb) has been examined by x-ray crystallography, ligand binding kinetics, and molecular dynamic simulations. The addition of 10 atm of xenon causes loss of diffraction in wild-type (wt) CerHbO(2) crystals, but Leu-86(G12)Ala CerHbO(2), which has an increased tunnel volume, stably accommodates two discrete xenon atoms: one adjacent to Leu-86(G12) and another near Ala-55(E18). Molecular dynamics simulations of ligand migration in wt CerHb show a low energy pathway through the apolar tunnel when Leu or Ala, but not Phe or Trp, is present at the 86(G12) position. The addition of 10-15 atm of xenon to solutions of wt CerHbCO and L86A CerHbCO causes 2-3-fold increases in the fraction of geminate ligand recombination, indicating that the bound xenon blocks CO escape. This idea was confirmed by L86F and L86W mutations, which cause even larger increases in the fraction of geminate CO rebinding, 2-5-fold decreases in the bimolecular rate constants for ligand entry, and large increases in the computed energy barriers for ligand movement through the apolar tunnel. Both the addition of xenon to the L86A mutant and oxidation of wt CerHb heme iron cause the appearance of an out Gln-44(E7) conformer, in which the amide side chain points out toward the solvent and appears to lower the barrier for ligand escape through the E7 gate. However, the observed kinetics suggest little entry and escape (≤ 25%) through the E7 pathway, presumably because the in Gln-44(E7) conformer is thermodynamically favored.


Assuntos
Simulação por Computador , Heme/química , Hemoglobinas/química , Invertebrados/química , Ferro/química , Modelos Moleculares , Animais , Cristalografia por Raios X , Heme/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Invertebrados/genética , Invertebrados/metabolismo , Ferro/metabolismo , Cinética , Ligantes , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Termodinâmica , Xenônio/química , Xenônio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA