Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuroimage ; 248: 118862, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34971766

RESUMO

The perception that someone is nearby, although nobody can be seen or heard, is called presence hallucination (PH). Being a frequent hallucination in patients with Parkinson's disease, it has been argued to be indicative of a more severe and rapidly advancing form of the disease, associated with psychosis and cognitive decline. PH may also occur in healthy individuals and has recently been experimentally induced, in a controlled manner during fMRI, using MR-compatible robotics and sensorimotor stimulation. Previous neuroimaging correlates of such robot-induced PH, based on conventional time-averaged fMRI analysis, identified altered activity in the posterior superior temporal sulcus and inferior frontal gyrus in healthy individuals. However, no link with the strength of the robot-induced PH was observed, and such activations were also associated with other sensations induced by robotic stimulation. Here we leverage recent advances in dynamic functional connectivity, which have been applied to different psychiatric conditions, to decompose fMRI data during PH-induction into a set of co-activation patterns that are tracked over time, as to characterize their occupancies, durations, and transitions. Our results reveal that, when PH is induced, the identified brain patterns significantly and selectively increase their transition probabilities towards a specific brain pattern, centred on the posterior superior temporal sulcus, angular gyrus, dorso-lateral prefrontal cortex, and middle prefrontal cortex. This change is not observed in any other control conditions, nor is it observed in association with other sensations induced by robotic stimulation. The present findings describe the neural mechanisms of PH in healthy individuals and identify a specific disruption of the dynamics of network interactions, extending previously reported network dysfunctions in psychotic patients with hallucinations to an induced robot-controlled specific hallucination in healthy individuals.


Assuntos
Conectoma , Alucinações/fisiopatologia , Imageamento por Ressonância Magnética , Robótica , Adolescente , Adulto , Feminino , Humanos , Masculino
2.
Neuroimage ; 211: 116621, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32058000

RESUMO

Functional magnetic resonance imaging provides rich spatio-temporal data of human brain activity during task and rest. Many recent efforts have focussed on characterising dynamics of brain activity. One notable instance is co-activation pattern (CAP) analysis, a frame-wise analytical approach that disentangles the different functional brain networks interacting with a user-defined seed region. While promising applications in various clinical settings have been demonstrated, there is not yet any centralised, publicly accessible resource to facilitate the deployment of the technique. Here, we release a working version of TbCAPs, a new toolbox for CAP analysis, which includes all steps of the analytical pipeline, introduces new methodological developments that build on already existing concepts, and enables a facilitated inspection of CAPs and resulting metrics of brain dynamics. The toolbox is available on a public academic repository at https://c4science.ch/source/CAP_Toolbox.git. In addition, to illustrate the feasibility and usefulness of our pipeline, we describe an application to the study of human cognition. CAPs are constructed from resting-state fMRI using as seed the right dorsolateral prefrontal cortex, and, in a separate sample, we successfully predict a behavioural measure of continuous attentional performance from the metrics of CAP dynamics (R â€‹= â€‹0.59).


Assuntos
Atenção/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Conectoma/normas , Humanos , Imageamento por Ressonância Magnética/normas , Rede Nervosa/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/normas , Córtex Pré-Frontal/diagnóstico por imagem , Software , Interface Usuário-Computador
3.
J Neurosci ; 37(1): 11-22, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28053026

RESUMO

Vision is known to be shaped by context, defined by environmental and bodily signals. In the Taylor illusion, the size of an afterimage projected on one's hand changes according to proprioceptive signals conveying hand position. Here, we assessed whether the Taylor illusion does not just depend on the physical hand position, but also on bodily self-consciousness as quantified through illusory hand ownership. Relying on the somatic rubber hand illusion, we manipulated hand ownership, such that participants embodied a rubber hand placed next to their own hand. We found that an afterimage projected on the participant's hand drifted depending on illusory ownership between the participants' two hands, showing an implication of self-representation during the Taylor illusion. Oscillatory power analysis of electroencephalographic signals showed that illusory hand ownership was stronger in participants with stronger α suppression over left sensorimotor cortex, whereas the Taylor illusion correlated with higher ß/γ power over frontotemporal regions. Higher γ connectivity between left sensorimotor and inferior parietal cortex was also found during illusory hand ownership. These data show that afterimage drifts in the Taylor illusion do not only depend on the physical hand position but also on subjective ownership, which itself is based on the synchrony of somatosensory signals from the two hands. The effect of ownership on afterimage drifts is associated with ß/γ power and γ connectivity between frontoparietal regions and the visual cortex. Together, our results suggest that visual percepts are not only influenced by bodily context but are self-grounded, mapped on a self-referential frame. SIGNIFICANCE STATEMENT: Vision is influenced by the body: in the Taylor illusion, the size of an afterimage projected on one's hand changes according to tactile and proprioceptive signals conveying hand position. Here, we report a new phenomenon revealing that the perception of afterimages depends not only on bodily signals, but also on the sense of self. Relying on the rubber hand illusion, we manipulated hand ownership, so that participants embodied a rubber hand placed next to their own hand. We found that visual afterimages projected on the participant's hand drifted laterally, only when the rubber hand was embodied. Electroencephalography revealed spectral dissociations between somatic and visual effects, and higher γ connectivity along the dorsal visual pathways when the rubber hand was embodied.


Assuntos
Ritmo beta/fisiologia , Ritmo Gama/fisiologia , Mãos , Autoimagem , Percepção Visual , Pós-Imagem , Ritmo alfa/fisiologia , Imagem Corporal , Ego , Eletroencefalografia , Feminino , Lobo Frontal/fisiologia , Humanos , Ilusões , Masculino , Lobo Parietal/fisiologia , Córtex Sensório-Motor/fisiologia , Córtex Visual/fisiologia , Adulto Jovem
4.
Nat Protoc ; 17(12): 2966-2989, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097181

RESUMO

Although hallucinations are important and frequent symptoms in major psychiatric and neurological diseases, little is known about their brain mechanisms. Hallucinations are unpredictable and private experiences, making their investigation, quantification and assessment highly challenging. A major shortcoming in hallucination research is the absence of methods able to induce specific and short-lasting hallucinations, which resemble clinical hallucinations, can be elicited repeatedly and vary across experimental conditions. By integrating clinical observations and recent advances in cognitive neuroscience with robotics, we have designed a novel device and sensorimotor method able to repeatedly induce a specific, clinically relevant hallucination: presence hallucination. Presence hallucinations are induced by applying specific conflicting (spatiotemporal) sensorimotor stimulation including an upper extremity and the torso of the participant. Another, MRI-compatible, robotic device using similar sensorimotor stimulation permitted the identification of the brain mechanisms of these hallucinations. Enabling the identification of behavioral and a frontotemporal neural biomarkers of hallucinations, under fully controlled experimental conditions and in real-time, this method can be applied in healthy participants as well as patients with schizophrenia, neurodegenerative disease or other hallucinations. The execution of these protocols requires intermediate-level skills in cognitive neuroscience and MRI processing, as well as minimal coding experience to control the robotic device. These protocols take ~3 h to be completed.


Assuntos
Doenças Neurodegenerativas , Esquizofrenia , Humanos , Alucinações/diagnóstico , Alucinações/psicologia , Esquizofrenia/diagnóstico , Encéfalo , Imageamento por Ressonância Magnética
5.
iScience ; 24(1): 101955, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33458614

RESUMO

Thought insertion (TI) is characterized by the experience that certain thoughts, occurring in one's mind, are not one's own, but the thoughts of somebody else and suggestive of a psychotic disorder. We report a robotics-based method able to investigate the behavioral and subjective mechanisms of TI in healthy participants. We used a robotic device to alter body perception by providing online sensorimotor stimulation, while participants performed cognitive tasks implying source monitoring of mental states attributed to either oneself or another person. Across several experiments, conflicting sensorimotor stimulation reduced the distinction between self- and other-generated thoughts and was, moreover, associated with the experimentally generated feeling of being in the presence of an alien agent and subjective aspects of TI. Introducing a new robotics-based approach that enables the experimental study of the brain mechanisms of TI, these results link TI to predictable self-other shifts in source monitoring and specific sensorimotor processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA