Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 130(6): 1046-1058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278978

RESUMO

BACKGROUND: The repurposing of FDA-approved drugs for anti-cancer therapies is appealing due to their established safety profiles and pharmacokinetic properties and can be quickly moved into clinical trials. Cancer progression and resistance to conventional chemotherapy remain the key hurdles in improving the clinical management of colon cancer patients and associated mortality. METHODS: High-throughput screening (HTS) was performed using an annotated library of 1,600 FDA-approved drugs to identify drugs with strong anti-CRC properties. The candidate drug exhibiting most promising inhibitory effects in in-vitro studies was tested for its efficacy using in-vivo models of CRC progression and chemoresistance and patient derived organoids (PTDOs). RESULTS: Albendazole, an anti-helminth drug, demonstrated the strongest inhibitory effects on the tumorigenic potentials of CRC cells, xenograft tumor growth and organoids from mice. Also, albendazole sensitized the chemoresistant CRC cells to 5-fluorouracil (5-FU) and oxaliplatin suggesting potential to treat chemoresistant CRC. Mechanistically, Albendazole treatment modulated the expression of RNF20, to promote apoptosis in CRC cells by delaying the G2/M phase and suppressing anti-apoptotic-Bcl2 family transcription. CONCLUSIONS: Albendazole, an FDA approved drug, carries strong therapeutic potential to treat colon cancers which are aggressive and potentially resistant to conventional chemotherapeutic agents. Our findings also lay the groundwork for further clinical testing.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Animais , Camundongos , Albendazol/farmacologia , Albendazol/uso terapêutico , Neoplasias Colorretais/patologia , Ubiquitina/farmacologia , Ubiquitina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Fluoruracila/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ubiquitina-Proteína Ligases
2.
Artigo em Inglês | MEDLINE | ID: mdl-38771154

RESUMO

Microtubule-associated serine-threonine kinase-like (MASTL) has recently been identified as a oncogenic kinase given its overexpression in numerous cancers. Our group has shown that MASTL expression is upregulated in mouse models of sporadic CRC and colitis associated cancer (CAC). CAC is one of the most severe complications of chronic IBD, but a limited understanding of the mechanisms governing the switch from normal healing to neoplasia in IBD underscores the need for increased research in this area. However, MASTL expression in IBD patients and its molecular regulation in IBD and CAC have not been studied. This study reveals that MASTL is upregulated by the cytokine interleukin (IL)-22, which promotes proliferation and has important functions in colitis recovery; however, IL-22 can also promote tumorigenesis when chronically elevated. Upon reviewing the publicly available data, we found significantly elevated MASTL and IL-22 levels in the biopsies from late-stage ulcerative colitis patients compared to controls, and that MASTL upregulation was associated with high IL-22 expression. Our subsequent in vitro studies found that IL-22 increases MASTL expression in intestinal epithelial cell lines, facilitating IL-22- mediated cell proliferation and downstream survival signaling. Inhibition of AKT activation abrogated IL-22-induced MASTL upregulation. We further found an increased association of carbonic anhydrase IX (CAIX) with MASTL in IL-22-treated cells, which stabilized MASTL expression. Inhibition of CAIX prevented IL-22-induced MASTL expression and cell survival. Overall, we show that IL-22/AKT signaling increases MASTL expression to promote cell survival and proliferation. Further, CAIX stabilizes MASTL by associating with it in response to IL-22 stimulation.

3.
Bioorg Med Chem ; 92: 117416, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37541070

RESUMO

Colorectal cancer (CRC) remains a leading cause of cancer-related deaths worldwide, despite advancements in diagnosis. The main reason for this is that many newly diagnosed CRC patients will suffer from metastasis to other organs. Thus, the development of new therapies is of critical importance. Claudin-1 protein is a component of tight junctions in epithelial cells, including those found in the lining of the colon. It plays a critical role in the formation and maintenance of tight junctions, which are essential for regulating the passage of molecules between cells. In CRC, claudin-1 is often overexpressed, leading to an increase in cell adhesion, which can contribute to the development and progression of the disease. Studies show that high levels of claudin-1 are associated with poor prognosis in CRC patients and targeting claudin-1 may have therapeutic potential for the treatment of CRC. Previously, we have identified a small molecule that inhibits claudin-1 dependent CRC progression. Reported herein are our lead optimization efforts around this scaffold to identify the key SAR components and the discovery of a key new compound that exhibits enhanced potency in SW620 cells.


Assuntos
Neoplasias Colorretais , Humanos , Claudina-1 , Neoplasias Colorretais/patologia , Células Epiteliais/metabolismo
4.
J Transl Med ; 20(1): 534, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401282

RESUMO

Gene editing has great potential in treating diseases caused by well-characterized molecular alterations. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-based gene-editing tools has substantially improved the precision and efficiency of gene editing. The CRISPR/Cas9 system offers several advantages over the existing gene-editing approaches, such as its ability to target practically any genomic sequence, enabling the rapid development and deployment of novel CRISPR-mediated knock-out/knock-in methods. CRISPR/Cas9 has been widely used to develop cancer models, validate essential genes as druggable targets, study drug-resistance mechanisms, explore gene non-coding areas, and develop biomarkers. CRISPR gene editing can create more-effective chimeric antigen receptor (CAR)-T cells that are durable, cost-effective, and more readily available. However, further research is needed to define the CRISPR/Cas9 system's pros and cons, establish best practices, and determine social and ethical implications. This review summarizes recent CRISPR/Cas9 developments, particularly in cancer research and immunotherapy, and the potential of CRISPR/Cas9-based screening in developing cancer precision medicine and engineering models for targeted cancer therapy, highlighting the existing challenges and future directions. Lastly, we highlight the role of artificial intelligence in refining the CRISPR system's on-target and off-target effects, a critical factor for the broader application in cancer therapeutics.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Inteligência Artificial , Edição de Genes/métodos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia
5.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946266

RESUMO

Despite significant improvements in clinical management, pancreatic cancer (PC) remains one of the deadliest cancer types, as it is prone to late detection with extreme metastatic properties. The recent findings that pancreatic cancer stem cells (PaCSCs) contribute to the tumorigenesis, progression, and chemoresistance have offered significant insight into the cancer malignancy and development of precise therapies. However, the heterogeneity of cancer and signaling pathways that regulate PC have posed limitations in the effective targeting of the PaCSCs. In this regard, the role for K-RAS, TP53, Transforming Growth Factor-ß, hedgehog, Wnt and Notch and other signaling pathways in PC progression is well documented. In this review, we discuss the role of PaCSCs, the underlying molecular and signaling pathways that help promote pancreatic cancer development and metastasis with a specific focus on the regulation of PaCSCs. We also discuss the therapeutic approaches that target different PaCSCs, intricate mechanisms, and therapeutic opportunities to eliminate heterogeneous PaCSCs populations in pancreatic cancer.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Humanos , Terapia de Alvo Molecular , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores Notch/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
6.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952355

RESUMO

Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.


Assuntos
Carcinogênese/genética , Claudina-1/genética , Células Epiteliais/metabolismo , Neoplasias/genética , Junções Íntimas/genética , Proteínas Supressoras de Tumor/genética , Proliferação de Células/genética , Claudina-1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Análise de Sobrevida , Junções Íntimas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
7.
Gut ; 68(3): 547-561, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30297438

RESUMO

Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.


Assuntos
Gastroenteropatias/metabolismo , Hepatopatias/metabolismo , Proteínas de Junções Íntimas/fisiologia , Antivirais/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Transformação Celular Neoplásica/metabolismo , Claudinas/metabolismo , Neoplasias Gastrointestinais/metabolismo , Trato Gastrointestinal/fisiologia , Hepatite C/tratamento farmacológico , Hepatite C/metabolismo , Humanos , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Terapia de Alvo Molecular/métodos , Junções Íntimas/fisiologia
8.
J Surg Res ; 242: 145-150, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077946

RESUMO

INTRODUCTION: Claudins are tight-junction proteins, which maintain an epithelial barrier in normal colon cells. Overexpression of Claudin-1 has been implicated for development of colon cancer. We postulated that Claudin-1 may be a useful target in near-infrared imaging and fluorescence-guided surgery. METHODS: We conjugated Claudin-1 antibody to LI-COR IR800DyeCW (Claudin-1-IRDye800CW). Western blotting of 9 human colon cancer cell lysates was performed. Animal imaging was performed with the LI-COR Pearl Trilogy Fluorescence Imaging System. A dose-response study was carried out with subcutaneous LS174T colon cancer cell line models. Increasing doses of Claudin-1-IRDye800CW via tail vein injection were administered to three groups of mice. Two groups of mice were used as controls (antibody alone, and dye alone). In vivo imaging was performed at 24, 48, and 72 h after administration of the conjugated dye. Orthotopic implantation of patient-derived tumors and cell lines was performed and peritoneal carcinomatosis models were created. After tumor growth, mice were administered Claudin-1-IRDye800CW and imaged in vivo 48 h later. The mice were euthanized and laparotomy was performed to assess internal organs and toxicity. RESULTS: Western blotting revealed that all colon cancer cell lysates expressed varying amounts of Claudin-1. All tumors demonstrated strong and specific fluorescence labeling at 800 nm, even with the lowest dose of 12.5 µg of Claudin-1-IRDye800CW. CONCLUSIONS: Claudin-1 is a useful target for near-infrared antibody-based imaging for visualization of colorectal tumors for future use in fluorescence-guided surgery.


Assuntos
Claudina-1/imunologia , Neoplasias do Colo/diagnóstico por imagem , Corantes Fluorescentes/administração & dosagem , Imunoconjugados/administração & dosagem , Neoplasias Peritoneais/diagnóstico por imagem , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Benzenossulfonatos/administração & dosagem , Linhagem Celular Tumoral , Colo/diagnóstico por imagem , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias do Colo/cirurgia , Relação Dose-Resposta a Droga , Humanos , Imunoconjugados/imunologia , Indóis/administração & dosagem , Injeções Intravenosas , Masculino , Camundongos , Camundongos Nus , Neoplasias Peritoneais/cirurgia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cirurgia Assistida por Computador/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861759

RESUMO

Claudins are cell-cell adhesion proteins, which are expressed in tight junctions (TJs), the most common apical cell-cell adhesion. Claudin proteins help to regulate defense and barrier functions, as well as differentiation and polarity in epithelial and endothelial cells. A series of studies have now reported dysregulation of claudin proteins in cancers. However, the precise mechanisms are still not well understood. Nonetheless, studies have clearly demonstrated a causal role of multiple claudins in the regulation of epithelial to mesenchymal transition (EMT), a key feature in the acquisition of a cancer stem cell phenotype in cancer cells. In addition, claudin proteins are known to modulate therapy resistance in cancer cells, a feature associated with cancer stem cells. In this review, we have focused primarily on highlighting the causal link between claudins, cancer stem cells, and therapy resistance. We have also contemplated the significance of claudins as novel targets in improving the efficacy of cancer therapy. Overall, this review provides a much-needed understanding of the emerging role of claudin proteins in cancer malignancy and therapeutic management.


Assuntos
Claudinas/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Claudinas/análise , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Prognóstico
10.
Mol Cancer ; 17(1): 111, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068336

RESUMO

BACKGROUND: Chemotherapeutic agents that modulate cell cycle checkpoints and/or tumor-specific pathways have shown immense promise in preclinical and clinical studies aimed at anti-cancer therapy. MASTL (Greatwall in Xenopus and Drosophila), a serine/threonine kinase controls the final G2/M checkpoint and prevents premature entry of cells into mitosis. Recent studies suggest that MASTL expression is highly upregulated in cancer and confers resistance against chemotherapy. However, the role and mechanism/s of MASTL mediated regulation of tumorigenesis remains poorly understood. METHODS: We utilized a large patient cohort and mouse models of colon cancer as well as colon cancer cells to determine the role of Mastl and associated mechanism in colon cancer. RESULTS: Here, we show that MASTL expression increases in colon cancer across all cancer stages compared with normal colon tissue (P < 0.001). Also, increased levels of MASTL associated with high-risk of the disease and poor prognosis. Further, the shRNA silencing of MASTL expression in colon cancer cells induced cell cycle arrest and apoptosis in vitro and inhibited xenograft-tumor growth in vivo. Mechanistic analysis revealed that MASTL expression facilitates colon cancer progression by promoting the ß-catenin/Wnt signaling, the key signaling pathway implicated in colon carcinogenesis, and up-regulating anti-apoptotic proteins, Bcl-xL and Survivin. Further studies where colorectal cancer (CRC) cells were subjected to 5-fluorouracil (5FU) treatment revealed a sharp increase in MASTL expression upon chemotherapy, along with increases in Bcl-xL and Survivin expression. Most notably, inhibition of MASTL in these cells induced chemosensitivity to 5FU with downregulation of Survivin and Bcl-xL expression. CONCLUSION: Overall, our data shed light on the heretofore-undescribed mechanistic role of MASTL in key oncogenic signaling pathway/s to regulate colon cancer progression and chemo-resistance that would tremendously help to overcome drug resistance in colon cancer treatment.


Assuntos
Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regulação para Cima , Células CACO-2 , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Estadiamento de Neoplasias , Transplante de Neoplasias , Prognóstico , Análise de Sobrevida , Via de Sinalização Wnt
11.
Semin Cell Dev Biol ; 42: 58-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26025580

RESUMO

The role of the tight junctions (TJ) in controlling paracellular traffic of ions and molecules, through the regulation of claudin proteins, is now established. However, it has also become increasingly evident that claudin proteins, as integral components of the TJs, play crucial role in maintaining the cell-cell integrity. In conformity, deregulation of claudin expression and cellular distribution in cancer tissues has been widely documented and correlated with cancer progression and metastasis. However, this correlation is not unidirectional and rather suggests tissue specific regulations. Irrespective, if the widely described correlations between altered claudin expression and cancer initiation/progression could be established, they may serve as important markers for prognostic purposes and potential therapeutic targets. In this review, we summarize data from screening of the cancer tissues, manipulation of claudin expression in cells and animals subjected to cancer models, and how claudins are regulated in cancer. The focus of this article remains analysis of the association between cancer and the claudins and to decipher clinical relevance.


Assuntos
Claudinas/metabolismo , Neoplasias/patologia , Animais , Claudinas/genética , Metilação de DNA , Epigênese Genética , Transição Epitelial-Mesenquimal , Regulação da Expressão Gênica , Humanos
12.
Pflugers Arch ; 469(1): 69-75, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27988840

RESUMO

Environment affects an individual's development and disease risk which then suggest that the environmental cues must have ways of reaching to the cellular nuclei to orchestrate desired genetic changes. Polarized and differentiated epithelial cells join together by cell-cell adhesions to create a protective sheet which separates body's internal milieu from its environment, albeit in highly regulated manner. Among these cell-cell adhesions, a key role of tight junction, the apical cell-cell adhesion, in maintaining epithelial cell polarity and differentiation is well recognized. Moreover, significant changes in expression and cellular distribution of claudin proteins, integral component of the tight junction, characterize pathophysiological changes including neoplastic growth and progression. Studies have further confirmed existence of complex claudin-based interactomes and demonstrated that changes in such protein partnering can influence barrier integrity and communication between a cell and its environment to produce undesired outcome. Cell signaling is the process by which cells respond to their environment to make dynamic decisions to live, grow and proliferate, or die. Thus, pivotal role of the deregulated tight junction structure/function in influencing cellular signaling cascades to alter cellular phenotype can be envisaged, however, is not well understood. Needless to mention that advanced knowledge in this area can help improve therapeutic considerations and preventive measures. Here, we discuss potential role of the tight junction in the regulation of "outside-in" signaling to regulate cancer growth, with specific focus upon the claudin family of proteins.


Assuntos
Carcinogênese/metabolismo , Claudinas/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Epiteliais/metabolismo , Humanos , Junções Íntimas/metabolismo
13.
Exp Cell Res ; 349(1): 119-127, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742576

RESUMO

Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells cultured in the presence of TNF-α (10ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.


Assuntos
Adenocarcinoma/patologia , Movimento Celular/efeitos dos fármacos , Claudina-1/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Fosforilação/efeitos dos fármacos , Quinases da Família src/metabolismo
14.
Semin Cancer Biol ; 35 Suppl: S276-S304, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26590477

RESUMO

Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us address stages and types of cancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for future research is offered.


Assuntos
Heterogeneidade Genética , Terapia de Alvo Molecular , Neoplasias/terapia , Medicina de Precisão , Antineoplásicos Fitogênicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/prevenção & controle , Transdução de Sinais , Microambiente Tumoral/genética
15.
Carcinogenesis ; 37(3): 223-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26762229

RESUMO

The Wnt/ß-catenin signaling pathway is indispensable for embryonic development, maintenance of adult tissue homeostasis and repair of epithelial injury. Unsurprisingly, aberrations in this pathway occur frequently in many cancers and often result in increased nuclear ß-catenin. While mutations in key pathway members, such as ß-catenin and adenomatous polyposis coli, are early and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of PDACs, indirect mechanisms such as promoter methylation, increased ligand secretion and decreased pathway inhibitor secretion work in concert to promote aberrant cytosolic/nuclear localization of ß-catenin. Concomitant with alterations in ß-catenin localization, changes in mucin expression and localization have been documented in multiple malignancies. Indeed, numerous studies over the years suggest an intricate and mutually regulatory relationship between mucins (MUCs) and ß-catenin. In the current review, we summarize several studies that describe the relationship between mucins and ß-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer.


Assuntos
Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/patologia , Mucinas/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Humanos
16.
Gut ; 63(4): 622-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23766441

RESUMO

OBJECTIVE: Claudin-1 expression is increased and dysregulated in colorectal cancer and causally associates with the dedifferentiation of colonic epithelial cells, cancer progression and metastasis. Here, we have sought to determine the role claudin-1 plays in the regulation of intestinal epithelial homeostasis. DESIGN: We have used a novel villin-claudin-1 transgenic (Cl-1Tg) mouse as model (with intestinal claudin-1 overexpression). The effect of claudin-1 expression upon colonic epithelial differentiation, lineage commitment and Notch-signalling was determined using immunohistochemical, immunoblot and real-time PCR analysis. The frequently used mouse model of dextran sodium sulfate (DSS)-colitis was used to model inflammation, injury and repair. RESULTS: In Cl-1Tg mice, normal colonocyte differentiation programme was disrupted and goblet cell number and mucin-2 (muc-2) expressions were significantly downregulated while Notch- and ERK1/2-signalling were upregulated, compared with the wild type-littermates. Cl-1Tg mice were also susceptible to colonic inflammation and demonstrated impaired recovery and hyperproliferation following the DSS-colitis. Our data further show that claudin-1 regulates Notch-signalling through the regulation of matrix metalloproteinase-9 (MMP-9) and p-ERK signalling to regulate proliferation and differentiation. CONCLUSIONS: Claudin-1 helps regulate intestinal epithelial homeostasis through the regulation of Notch-signalling. An upregulated claudin-1 expression induces MMP-9 and p-ERK signalling to activate Notch-signalling, which in turn inhibits the goblet cell differentiation. Decreased goblet cell number decreases muc-2 expression and thus enhances susceptibility to mucosal inflammation. Claudin-1 expression also induces colonic epithelial proliferation in a Notch-dependent manner. Our findings may help understand the role of claudin-1 in the regulation of inflammatory bowel diseases and CRC.


Assuntos
Claudina-1/fisiologia , Colo/fisiologia , Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células , Colite/induzido quimicamente , Colite/fisiopatologia , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Homeostase/fisiologia , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real
17.
Mol Cancer ; 13: 167, 2014 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-24997475

RESUMO

BACKGROUND: The tight junction protein Claudin-1, a claudin family member, has been implicated in several gastro-intestinal pathologies including inflammatory bowel disease (IBD) and colorectal cancer (CRC). In this regard, we have demonstrated that claudin-1 expression in colon cancer cells potentiates their tumorigenic ability while in vivo expression of claudin-1 in the intestinal epithelial cells (IECs) promotes Notch-activation, inhibits goblet cell differentiation and renders susceptibility to mucosal inflammation. Notably, a key role of inflammation in colon cancer progression is being appreciated. Therefore, we examined whether inflammation plays an important role in claudin-1-dependent upregulation of colon carcinogenesis. METHODS: APCmin mice were crossed with Villin-claudin-1 transgenic mice to generate APC-Cldn1 mice. H&E stained colon tissues were assessed for tumor number, size and histological grade. Additionally, microarray and qPCR analyses of colonic tumors were performed to assess molecular changes due to claudin-1 expression. APC-Cldn1 and APCmin controls were assessed for colonic permeability via rectal administration of FITC-dextran, and bacterial translocation via qPCR analysis of 16S rDNA. RESULTS: Claudin-1 overexpression in APCmin mice significantly increased (~4-fold) colonic tumor growth and size, and decreased survival. Furthermore, transcriptome analysis supported upregulated proliferation, and increased Wnt and Notch-signaling in APC-Cldn1 mice. APC-Cldn1 mice also demonstrated inhibition of mucosal defense genes while expression of pro-inflammatory genes was sharply upregulated, especially the IL-23/IL-17 signaling. We predict that increased Notch/Wnt-signaling underlie the early onset of adenoma formation in APC-Cldn1 mice. An increase in mucosal permeability due to the adenomas and the inherent barrier defect in these mice further facilitate bacterial translocation into the mucosa to induce inflammation, which in turn promote the tumorigenesis. CONCLUSION: Taken together, these results confirm the role of claudin-1 as a promoter of colon tumorigenesis and further identify the role of the dysregulated antigen-tumor interaction and inflammation in claudin-1-dependent upregulation of colon tumorigenesis.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Transformação Celular Neoplásica/genética , Claudina-1/biossíntese , Neoplasias do Colo/genética , Polipose Adenomatosa do Colo/patologia , Animais , Claudina-1/genética , Neoplasias do Colo/patologia , Células Epiteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade p19 da Interleucina-23/biossíntese , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Camundongos , Mucina-2/biossíntese
18.
Biomolecules ; 14(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38540693

RESUMO

Claudins (CLDN1-CLDN24) are a family of tight junction proteins whose dysregulation has been implicated in tumorigeneses of many cancer types. In colorectal cancer (CRC), CLDN1, CLDN2, CLDN4, and CLDN18 have been shown to either be upregulated or aberrantly expressed. In the normal colon, CLDN1 and CLDN3-7 are expressed. Although a few claudins, such as CLDN6 and CLDN7, are expressed in CRC their levels are reduced compared to the normal colon. The present review outlines the expression profiles of claudin proteins in CRC and those that are potential biomarkers for prognostication.


Assuntos
Claudinas , Neoplasias Colorretais , Humanos , Claudina-1/genética , Claudinas/genética , Proteínas de Junções Íntimas , Neoplasias Colorretais/genética
19.
Obes Rev ; : e13766, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745386

RESUMO

Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.

20.
Carcinogenesis ; 34(11): 2610-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23880304

RESUMO

Expression of claudin-1, a tight junction protein, is highly upregulated in colon cancer. We have reported that claudin-1 expression in colon cancer cells is epigenetically regulated as histone deacetylase (HDAC) inhibitors decrease claudin-1 messenger RNA (mRNA) stability and thus expression. In this regard, our data suggested a role of the 3'-untranslated region (UTR) in the regulation of HDAC-dependent regulation of claudin-1 mRNA stability. In the current study, we demonstrate, based on our continued investigation, that the ELAV-like RNA-binding proteins (RBPs), human antigen R (HuR) and tristetraprolin (TTP) associate with the 3'-UTR of claudin-1 mRNA to modulate the latter's stability. Ribonomic and site-directed mutagenesis approaches were used to confirm the binding of HuR and TTP to the 3'-UTR of claudin-1. We further confirmed their roles in the stabilization of claudin-1 mRNA, under conditions of HDAC inhibition. In summary, we report that HuR and TTP are the critical regulators of the posttranscriptional regulation of claudin-1 expression in colon cancer cells. We also demonstrate that inhibition of HDACs by trichostatin treatment decreased the binding of HuR while increasing the binding of TTP to the 3'-UTR of claudin-1. Additionally, we provide data showing transcriptional regulation of claudin-1 expression, through the regulation of transcription factor Sp1. Taken together, we demonstrate epigenetic regulation of claudin-1 expression in colon cancer cells at the transcriptional and posttranscriptional levels.


Assuntos
Neoplasias da Mama/genética , Claudina-1/genética , Neoplasias do Colo/genética , Proteínas ELAV/metabolismo , Ácidos Hidroxâmicos/farmacologia , Rim/metabolismo , Tristetraprolina/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Células Cultivadas , Imunoprecipitação da Cromatina , Claudina-1/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Proteínas ELAV/genética , Epigênese Genética , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Humanos , Técnicas Imunoenzimáticas , Rim/efeitos dos fármacos , Rim/patologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tristetraprolina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA