Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Chem Rev ; 124(11): 7165-7213, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38758918

RESUMO

Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.


Assuntos
Radiação Eletromagnética , Melaninas , Melaninas/química , Melaninas/metabolismo , Humanos , Animais
2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615709

RESUMO

Thermodynamics tells us to expect underwater contact between two hydrophobic surfaces to result in stronger adhesion compared to two hydrophilic surfaces. However, the presence of water changes not only energetics but also the dynamic process of reaching a final state, which couples solid deformation and liquid evacuation. These dynamics can create challenges for achieving strong underwater adhesion/friction, which affects diverse fields including soft robotics, biolocomotion, and tire traction. Closer investigation, requiring sufficiently precise resolution of film evacuation while simultaneously controlling surface wettability, has been lacking. We perform high-resolution in situ frustrated total internal reflection imaging to track underwater contact evolution between soft-elastic hemispheres of varying stiffness and smooth-hard surfaces of varying wettability. Surprisingly, we find the exponential rate of water evacuation from hydrophobic-hydrophobic (adhesive) contact is three orders of magnitude lower than that from hydrophobic-hydrophilic (nonadhesive) contact. The trend of decreasing rate with decreasing wettability of glass sharply changes about a point where thermodynamic adhesion crosses zero, suggesting a transition in mode of evacuation, which is illuminated by three-dimensional spatiotemporal height maps. Adhesive contact is characterized by the early localization of sealed puddles, whereas nonadhesive contact remains smooth, with film-wise evacuation from one central puddle. Measurements with a human thumb and alternatively hydrophobic/hydrophilic glass surface demonstrate practical consequences of the same dynamics: adhesive interactions cause instability in valleys and lead to a state of more trapped water and less intimate solid-solid contact. These findings offer interpretation of patterned texture seen in underwater biolocomotive adaptations as well as insight toward technological implementation.

3.
Soft Matter ; 18(31): 5843-5849, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900052

RESUMO

Friction is one of the leading causes of energy loss in moving parts, and understanding how roughness affects friction is of utmost importance. From creating surfaces with high friction to prevent slip and movement, to creating surfaces with low friction to minimize energy loss, roughness plays a key role. By measuring shear stresses of crosslinked elastomers on three rough surfaces of similar surface chemistry across nearly six decades of sliding velocity, we demonstrate the dominant role of adhesive frictional dissipation. Furthermore, while it was previously known that roughness-induced oscillations affected the viscoelastic dissipation, we show that these oscillations also control the molecular detachment process and the resulting adhesive dissipation. This contrasts with typical models of friction, where only the amount of contact area and the strength of interfacial bonding govern the adhesive dissipation. Finally, we show that all the data can be collapsed onto a universal curve when the shear stress is scaled by the square root of elastic modulus and the velocity is scaled by a critical velocity at which the system exhibits macroscopic buckling instabilities. Taken together, these results suggest a design principle broadly applicable to frictional systems ranging from tires to soft robotics.

4.
Proc Natl Acad Sci U S A ; 116(51): 25484-25490, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31772024

RESUMO

A mechanistic understanding of adhesion in soft materials is critical in the fields of transportation (tires, gaskets, and seals), biomaterials, microcontact printing, and soft robotics. Measurements have long demonstrated that the apparent work of adhesion coming into contact is consistently lower than the intrinsic work of adhesion for the materials, and that there is adhesion hysteresis during separation, commonly explained by viscoelastic dissipation. Still lacking is a quantitative experimentally validated link between adhesion and measured topography. Here, we used in situ measurements of contact size to investigate the adhesion behavior of soft elastic polydimethylsiloxane hemispheres (modulus ranging from 0.7 to 10 MPa) on 4 different polycrystalline diamond substrates with topography characterized across 8 orders of magnitude, including down to the angstrom scale. The results show that the reduction in apparent work of adhesion is equal to the energy required to achieve conformal contact. Further, the energy loss during contact and removal is equal to the product of the intrinsic work of adhesion and the true contact area. These findings provide a simple mechanism to quantitatively link the widely observed adhesion hysteresis to roughness rather than viscoelastic dissipation.

5.
Chem Soc Rev ; 50(23): 13321-13345, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34751690

RESUMO

Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.


Assuntos
Adesivos , Bivalves , Animais , Humanos , Proteínas , Água
6.
J Am Chem Soc ; 143(7): 2622-2637, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560127

RESUMO

Melanin is ubiquitous in living organisms across different biological kingdoms of life, making it an important, natural biomaterial. Its presence in nature from microorganisms to higher animals and plants is attributed to the many functions of melanin, including pigmentation, radical scavenging, radiation protection, and thermal regulation. Generally, melanin is classified into five types-eumelanin, pheomelanin, neuromelanin, allomelanin, and pyomelanin-based on the various chemical precursors used in their biosynthesis. Despite its long history of study, the exact chemical makeup of melanin remains unclear, and it moreover has an inherent diversity and complexity of chemical structure, likely including many functions and properties that remain to be identified. Synthetic mimics have begun to play a broader role in unraveling structure and function relationships of natural melanins. In the past decade, polydopamine, which has served as the conventional form of synthetic eumelanin, has dominated the literature on melanin-based materials, while the synthetic analogues of other melanins have received far less attention. In this perspective, we will discuss the synthesis of melanin materials with a special focus beyond polydopamine. We will emphasize efforts to elucidate biosynthetic pathways and structural characterization approaches that can be harnessed to interrogate specific structure-function relationships, including electron paramagnetic resonance (EPR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. We believe that this timely Perspective will introduce this class of biopolymer to the broader chemistry community, where we hope to stimulate new opportunities in novel, melanin-based poly-functional synthetic materials.


Assuntos
Melaninas/química , Espectroscopia de Ressonância de Spin Eletrônica , Indóis/química , Indóis/metabolismo , Espectroscopia de Ressonância Magnética , Melaninas/biossíntese , Conformação Molecular , Polímeros/química , Polímeros/metabolismo
7.
J Anat ; 238(5): 1143-1155, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33319377

RESUMO

The functional morphology of squamate fibrillar adhesive systems has been extensively investigated and has indirectly and directly influenced the design of synthetic counterparts. Not surprisingly, the structure and geometry of exemplar fibrils (setae) have been the subject of the bulk of the attention in such research, although variation in setal morphology along the length of subdigital adhesive pads has been implicated to be important in the effective functioning of these systems. Adhesive setal field configuration has been described for several geckos, but that of the convergent Anolis lizards, comprised of morphologically simpler fibrils, remains largely unexplored. Here, we examine setal morphology along the proximodistal axis of the digits of Anolis equestris and compare our findings to those for a model gecko, Gekko gecko. Consistent with previous work, we found that the setae of A. equestris are generally thinner, shorter, and present at higher densities than those of G. gecko and terminate in a single spatulate tip. Contrastingly, the setae of G. gecko are hierarchically branched in structure and carry hundreds of spatulate tips. Although the splitting of contacts into multiple smaller tips is predicted to increase the adhesive performance of a fiber compared to an unbranched one, we posited that the adhesive performance of G. gecko and A. equestris would be relatively similar when the configuration of the setal fields of each was accounted for. We found that, as in geckos, setal morphology of A. equestris follows a predictable pattern along the proximodistal axis of the pad, although there are several critical differences in the configuration of the setal fields of these two groups. Most notably, the pattern of variation in setal length of A. equestris is effectively opposite to that exhibited by G. gecko. This difference in clinal variation mirrors the difference in the direction in which the setal fields of anoles and geckos are peeled from the substrate, consistent with the hypothesis that biomechanical factors are the chief determinants of these patterns of variation. Future empirical work, however, is needed to validate this. Our findings set the stage for future comparative studies investigating the functional morphology of these convergent adhesive apparatuses. Such investigations will lead to an enhanced understanding of the interactions between form, function, and environment of fibril-based biological adhesive systems.


Assuntos
Lagartos/anatomia & histologia , Modelos Biológicos , Dedos do Pé/anatomia & histologia , Animais , Fenômenos Biomecânicos
8.
J Exp Biol ; 224(Pt 4)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504587

RESUMO

Gecko substrate use is likely influenced by adhesive performance, yet few studies have demonstrated this empirically. Herein, we examined the substrate use, adhesive performance and vertical clinging behaviour of Gekko gecko in captivity to investigate whether adhesive performance influences patterns of substrate use. We found that geckos were observed significantly more often on the substrate (glass) that elicited maximal adhesive performance relative to its availability within our experimental enclosures, indicating that geckos preferentially use substrates on which their adhesive performance is maximal. Our work here provides additional, yet crucial data establishing connections between adhesive performance and patterns of substrate use in captivity, suggesting the hypothesis that substrate preferences of free-ranging geckos should be correlated with adhesive performance. Clearly, further experimental and field research is necessary to test this hypothesis and identify other parameters that individually and/or collectively influence the habitat use of free-ranging geckos.


Assuntos
Adesivos , Lagartos , Adesividade , Animais , Ecossistema
9.
Biochemistry ; 59(37): 3508-3516, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32844640

RESUMO

The bacterium Caulobacter crescentus is known to attach irreversibly to underwater surfaces by utilizing an adhesive structure called the holdfast, which exhibits the greatest known adhesive strength of any organism. The very small size of the holdfast (∼400 nm wide and ∼40 nm high) has made direct chemical analysis difficult, and its structure remains poorly understood. In this study, we employ spectroscopic techniques, including attenuated total reflection infrared spectroscopy (ATR-IR) and X-ray photoelectron spectroscopy, to probe holdfast chemistry. The data indicate the presence of a peptide signal within the holdfast polymer. By comparing the ATR-IR spectrum of the holdfast to peptidoglycan spectra from other bacterial species, we demonstrate the similarity of the holdfast chemistry to that of peptidoglycan, suggesting peptide cross-linking may play a role in holdfast architecture. To probe the molecular groups at the interface, surface-sensitive sum frequency generation spectroscopy was used to show that aromatic and hydroxyl groups related to this protein content at the adhesive interface could be playing a crucial role in adhesion. On the basis of these results, we propose a model of the holdfast architecture with similarities to the peptide cross-linking observed in the peptidoglycan polymer of the bacterial cell wall. These results not only provide information about the development of adhesives that could be based on holdfast chemical architecture but also reveal a potentially yet unexplored biosynthetic pathway in holdfast synthesis that has not yet been revealed by genetic approaches, thereby opening up a potentially new avenue of research in holdfast synthesis.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Transporte/química , Caulobacter crescentus/fisiologia , Fragmentos de Peptídeos/química , Peptidoglicano/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Reagentes de Ligações Cruzadas/química , Espectrofotometria Infravermelho
10.
J Am Chem Soc ; 142(29): 12802-12810, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638590

RESUMO

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin.


Assuntos
Melaninas/química , Compostos Organosselênicos/química , Selênio/química , Humanos , Queratinócitos/efeitos dos fármacos , Melaninas/farmacologia , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Tamanho da Partícula , Selênio/farmacologia , Propriedades de Superfície , Raios X
11.
Environ Microbiol ; 22(3): 952-963, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31390129

RESUMO

Chlorophyll (Chl) f and d are the most recently discovered chlorophylls, enabling cyanobacteria to harvest near-infrared radiation (NIR) at 700-780 nm for oxygenic photosynthesis. Little is known about the occurrence of these pigments in terrestrial habitats. Here, we provide first details on spectral photon irradiance within the photic zones of four terrestrial cave systems in concert with a detailed investigation of photopigmentation, light reflectance and microbial community composition. We frequently found Chl f and d along the photic zones of caves characterized by low light enriched in NIR and inhabited by cyanobacteria producing NIR-absorbing pigments. Surprisingly, deeper parts of caves still contained NIR, an effect likely attributable to the reflectance of specific wavelengths by the surface materials of cave walls. We argue that the stratification of microbial communities across the photic zones of cave entrances resembles the light-driven species distributions in forests and aquatic environments.


Assuntos
Cavernas/microbiologia , Cianobactérias/fisiologia , Ecossistema , Raios Infravermelhos , Clorofila/análogos & derivados , Clorofila/metabolismo , Cianobactérias/efeitos da radiação , Florestas , Fotossíntese/fisiologia
12.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836580

RESUMO

Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.


Assuntos
Bacillus megaterium/genética , Biopolímeros/metabolismo , Melaninas/biossíntese , Microrganismos Geneticamente Modificados/metabolismo , Monofenol Mono-Oxigenase/genética , Vibrio/metabolismo , Biopolímeros/genética , Microrganismos Geneticamente Modificados/genética , Monofenol Mono-Oxigenase/metabolismo , Vibrio/genética
13.
Langmuir ; 36(1): 447-455, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826618

RESUMO

The properties of nanoconfined water arise in direct response to the properties of the interfaces that confine it. A great deal of research has focused on understanding how and why the physical properties of confined water differ greatly from the bulk. In this work, we have used all-atom molecular dynamics (MD) simulations to provide a detailed description of the structural and dynamical properties of nanoconfined water between two monolayers consisting of an archetypal ionic surfactant, cetrimonium bromide (CTAB, [CH3(CH2)15N(CH3)3]+Br-). Small differences in the area per surfactant of the monolayers impart a clear effect on the intrinsic density, mobility, and ordering of the interfacial water layer confined by the monolayers. We find that as the area per surfactant within a monolayer decreases, the mobility of the interfacial water molecules decreases in response. As the monolayer packing density decreases, we find that each individual CTAB molecule has a greater effect on the ordering of water molecules in its first hydration shell. In a denser monolayer, we observe that the effect of individual CTAB molecules on the ordering of water molecules is hindered by increased competition between headgroups. Therefore, when two monolayers with different areas per surfactant are used to confine a nanoscale water layer, we observe the emergence of noncentrosymmetry.

14.
Langmuir ; 36(4): 837-843, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898908

RESUMO

Use of a plasma-polymerized (pp) layer under a polyurethane (PU) coating on aluminum dramatically improves the corrosion resistance. Compared to conventional polymer coatings, pp coatings are highly cross-linked, have better adhesion to substrates, and result in lower emission of volatile organic contents. Although past research has focused on the properties of comparatively thick pp films and on the use of pp films alone to protect metals, we consider here very thin pp coatings as a primer layer to improve corrosion resistance. Electrochemical impedance spectroscopy combined with salt spray lab tests show that the corrosion resistance of a PU coating on top of a pp coating from hexamethyldisiloxane (HMDSO) is much better than that of a PU coating directly on Al 3003. The relatively poor pull-off adhesion between PU and pp-HMDSO is readily addressed using a gradient coating by depositing a pp maleic anhydride layer over the pp-HMDSO coating or by modifying the surface composition of the pp-HMDSO coating with N2 plasma. X-ray photon spectroscopy analysis of the failure interface from pull-off tests makes clear that failure does not occur at the interface between the pp coating and the metal substrate. Field tests show the performance of the coating system with PU on a gradient coating on Al 3003 to be superior to that of a coating system of PU on chromate-treated Al 3003.

15.
Phys Rev Lett ; 122(12): 128004, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978075

RESUMO

The friction between a liquid swollen soft elastomer and a solid surface depends on the state of a confined liquid. To measure the physical state of the confined liquid, an interface-sensitive sum frequency generation spectroscopy technique was used to probe the contact region. We find that during sliding (friction) and pull-off (adhesion) experiments of pentadecane-swollen poly(dimethyl siloxane) lenses submerged in linear alkane (pentadecane) on a sapphire substrate, crystallinelike ordering of the liquid occurs only at the contact line, where we anticipate the highest shear. This crystallinelike structure of pentadecane molecules is transient and shows Arrhenius temperature dependence with unusually long relaxation times (hundreds of seconds) and an activation energy (50 kJ/mole), which is twice that of the bulk pentadecane liquid, at temperatures that are 14-70 °C higher than the bulk melting temperature (T_{m}=9 °C). This unusual long-lived crystallinelike ordering may explain why these systems show higher friction coefficients (boundary lubrication) compared to values predicted using bulk viscosity of pentadecane (hydrodynamic lubrication).

16.
Front Zool ; 16: 19, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210775

RESUMO

BACKGROUND: Mucus and mucus glands are important features of the amphibian cutis. In tree frogs, the mucus glands and their secretions are crucial components of the adhesive digital pads of these animals. Despite a variety of hypothesised functions of these components in tree frog attachment, the functional morphology of the digital mucus glands and the chemistry of the digital mucus are barely known. Here, we use an interdisciplinary comparative approach to analyse these components, and discuss their roles in tree frog attachment. RESULTS: Using synchrotron micro-computer-tomography, we discovered in the arboreal frog Hyla cinerea that the ventral digital mucus glands differ in their morphology from regular anuran mucus glands and form a subdermal gland cluster. We show the presence of this gland cluster also in several other-not exclusively arboreal-anuran families. Using cryo-histochemistry as well as infrared and sum frequency generation spectroscopy on the mucus of two arboreal (H. cinerea and Osteopilus septentrionalis) and of two terrestrial, non-climbing frog species (Pyxicephalus adspersus and Ceratophrys cranwelli), we find neutral and acidic polysaccharides, and indications for proteinaceous and lipid-like mucus components. The mucus chemistry varies only little between dorsal and ventral digital mucus in H. cinerea, ventral digital and abdominal mucus in H. cinerea and O. septentrionalis, and between the ventral abdominal mucus of all four studied species. CONCLUSIONS: The presence of a digital mucus gland cluster in various anuran families, as well as the absence of differences in the mucus chemistry between arboreal and non-arboreal frog species indicate an adaptation towards generic functional requirements as well as to attachment-related requirements. Overall, this study contributes to the understanding of the role of glands and their secretions in tree frog attachment and in bioadhesion in general, as well as the evolution of anurans.

17.
Langmuir ; 35(21): 7035-7042, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31035758

RESUMO

Bacterial adhesion is described as a multistep process of interactions between microbes and the substrate, beginning with reversible contact, followed by irreversible adhesion. We explore the influence of substrate zeta potential on adhesion of Mycobacterium smegmatis, a nonpathogenic bacterial model for tuberculosis-causing Mycobacterium tuberculosis and a common foulant of reverse osmosis filtration systems. Substrates having a range of zeta potentials were prepared by coating silica with the polycation, poly(diallyldimethyl ammonium chloride) (pDADMAC), by adjusting the pH of alumina, a pH-responsive material, and by coating silica with a hydrophobic self-assembled monolayer coating of octadecyltrichlorosilane. Our observations using these surfaces demonstrated that adhesion of M. smegmatis increased significantly by more than 200% on the silica-pDADMAC system and more than 300% on alumina substrates, as zeta potential became less negative, and that the variation of pH did not affect adhesion on alumina surfaces. Live and heat-killed bacteria were studied to investigate the contribution of biological response to adhesion with respect to zeta potential. While approximately 60% fewer heat-killed M. smegmatis adhered to pDADMAC-coated silica substrates, the trend of significantly increasing adhesion with less negative zeta potential was still observed. These results show the influence of zeta potential on adhesion of M. smegmatis, which is a separate process from that of the biological response. Across the range of substrate surface chemistries, hydrophobicities, and zeta potentials tested, adhesion of M. smegmatis can primarily be controlled by zeta potential. The bacterial zeta potential was not changed by the various experimental conditions and was -28.3 ± 2.4 mV.


Assuntos
Aderência Bacteriana , Materiais Revestidos Biocompatíveis/química , Mycobacterium smegmatis/metabolismo , Compostos Alílicos/química , Interações Hidrofóbicas e Hidrofílicas , Mycobacterium tuberculosis/metabolismo , Polietilenos/química , Compostos de Amônio Quaternário/química
18.
Biomacromolecules ; 20(7): 2577-2586, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31244021

RESUMO

Clinically used bio-based tissue sealants bring in the risk of animal-borne infections, non-degradability, allergic reactions, tissue compression, tissue necrosis, and poor wet adhesion. Motivated by these unsatisfactory properties of existing tissue sealants, herein, we designed a library of solvent- and initiator-free hydrophobic mussel-inspired degradable tissue adhesives that can stick and seal the epidermis, pericardium, and Glisson's capsule under physiologically relevant wet conditions. By varying the molar ratio of the functional groups, we obtained polyester adhesive sealants with similar surface energy and varying viscosity. The careful examination of the wetting behavior of these polyester adhesive sealants on tissue surfaces showed that the polyester adhesive sealant with lower viscosity has higher intrinsic work of adhesion, which allowed them to adhere to strongly hydrated surfaces such as pericardium and Glisson's capsule. Because of the lower intrinsic work of adhesion, the polyester adhesive sealant with higher viscosity only adhered to the relatively hydrophobic surface (epidermis). The strong wet adhesion to tissue surfaces, cell-compatibility, hydrolytic degradability, and radical scavenging nature of these polyester adhesive sealants make them potential candidates for wound closure procedures.


Assuntos
Poliésteres/química , Poliésteres/farmacologia , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Animais
19.
Biomacromolecules ; 20(12): 4593-4601, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31696706

RESUMO

Eumelanin is a ubiquitous natural pigment that has a broad absorption across ultraviolet (UV, 100-400 nm) and visible wavelengths (400-700 nm) and can protect against radiation. Synthetic eumelanin with properties similar to natural eumelanin has been made using dopamine or dihydroxyindole. Here, we use solid-state nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy to elucidate the chemical structure of synthetic eumelanins (made from dopamine and l-3,4-dihydroxyphenylalanine precursors) and investigate how their structures change after intensive UVA (315-400 nm) exposure. We first confirm that polydopamine has indole units. Upon UV exposure, the pyrrole ring in this indole unit remains intact, and a fraction of the six-membered benzyl ring is broken and the indole potentially converted to furo[3,4-b]pyrrole. This change in the chemical structure is accompanied by a release of carbon dioxide. In addition, the sepia (natural) eumelanin used for comparison is more stable than the synthetic eumelanin. Understanding the UVA degradation mechanism of eumelanin will help reveal the role of eumelanin in skin cancer and in the design of more efficient UV stabilizers.


Assuntos
Melaninas/química , Processos Fotoquímicos , Raios Ultravioleta , Animais , Humanos , Melaninas/metabolismo , Neoplasias Cutâneas/metabolismo
20.
Phys Chem Chem Phys ; 21(5): 2513-2518, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30656292

RESUMO

Quantification of interfacial composition and interfacial energy is essential for understanding prevalent phenomena such as purification and adhesion. However, for high-energy planar solid surfaces, traditional approaches for determining both parameters are inadequate. We take advantage of interface-sensitive spectroscopy to calculate the interfacial composition for acetone-chloroform, tetrahydrofuran-benzene, and N,N-dimethylformamide (DMF)-benzene mixtures. We calculate the differences in interfacial energy for the two components of each mixture from the adsorption isotherms and compare with that obtained from acid-base and dispersive interactions. The interfacial energy calculated using interfacial segregation agrees with the interfacial energy calculated by acid-base and dispersive interactions. The comparison illustrates how molecular interactions control macroscopic interfacial segregation. In all three mixtures, acid-base interactions dominate interfacial segregation. Comparing the two approaches for DMF-benzene mixtures leads to evidence of DMF dimerization in benzene. Using the present approach, the interfacial composition and interfacial energy can now be understood for interfacial behaviors including wetting and self-assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA