Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37144413

RESUMO

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Animais , Camundongos , Ratos , Pressão Sanguínea , Endotélio Vascular/metabolismo , Hipertensão/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/genética , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Vasodilatação
2.
J Pharmacol Exp Ther ; 384(1): 102-108, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779946

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to be a global challenge due to resulting morbidity and mortality. Cardiovascular (CV) involvement is a crucial complication in coronavirus disease 2019 (COVID-19), and no strategies are available to prevent or specifically address CV events in COVID-19 patients. The identification of molecular partners contributing to CV manifestations in COVID-19 patients is crucial for providing early biomarkers, prognostic predictors, and new therapeutic targets. The current report will focus on the role of microRNAs (miRNAs) in CV complications associated with COVID-19. Indeed, miRNAs have been proposed as valuable biomarkers and predictors of both cardiac and vascular damage occurring in SARS-CoV-2 infection. SIGNIFICANCE STATEMENT: It is essential to identify the molecular mediators of coronavirus disease 2019 (COVID-19) cardiovascular (CV) complications. This report focused on the role of microRNAs in CV complications associated with COVID-19, discussing their potential use as biomarkers, prognostic predictors, and therapeutic targets.


Assuntos
COVID-19 , Doenças Cardiovasculares , MicroRNAs , SARS-CoV-2 , Humanos , Biomarcadores/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/virologia , COVID-19/complicações , MicroRNAs/metabolismo
3.
Cell Mol Life Sci ; 79(8): 410, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821533

RESUMO

Beyond well-assessed risk factors, cardiovascular events could be also associated with the presence of epigenetic and genetic alterations, such as the methylenetetrahydrofolate-reductase (MTHFR) C677T polymorphism. This gene variant is related to increased circulating levels of homocysteine (Hcy) and cardiovascular risk. However, heterozygous carriers have an augmented risk of cardiovascular accidents independently from normal Hcy levels, suggesting the presence of additional deregulated processes in MTHFR C677T carriers. Here, we hypothesize that targeting Sirtuin 1 (SIRT1) could be an alternative mechanism to control the cardiovascular risk associated to MTHFR deficiency condition. Flow Mediated Dilatation (FMD) and light transmission aggregometry assay were performed in subjects carrying MTHFR C677T allele after administration of resveratrol, the most powerful natural clinical usable compound that owns SIRT1 activating properties. MTHFR C677T carriers with normal Hcy levels revealed endothelial dysfunction and enhanced platelet aggregation associated with SIRT1 downregulation. SIRT1 activity stimulation by resveratrol intake was able to override these abnormalities without affecting Hcy levels. Impaired endothelial function, bleeding time, and wire-induced thrombus formation were rescued in a heterozygous Mthfr-deficient (Mthfr+/-) mouse model after resveratrol treatment. Using a cell-based high-throughput multiplexed screening (HTS) assay, a novel selective synthetic SIRT1 activator, namely ISIDE11, was identified. Ex vivo and in vivo treatment of Mthfr+/- mice with ISIDE11 rescues endothelial vasorelaxation and reduces wire-induced thrombus formation, effects that were abolished by SIRT1 inhibitor. Moreover, platelets from MTHFR C677T allele carriers treated with ISIDE11 showed normalization of their typical hyper-reactivity. These results candidate SIRT1 activation as a new therapeutic strategy to contain cardio and cerebrovascular events in MTHFR carriers.


Assuntos
Homocistinúria , Metilenotetra-Hidrofolato Redutase (NADPH2) , Sirtuína 1 , Trombose , Animais , Genótipo , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Camundongos , Espasticidade Muscular , Transtornos Psicóticos/metabolismo , Resveratrol/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Trombose/tratamento farmacológico , Trombose/genética , Trombose/metabolismo , Trombose/prevenção & controle
4.
Eur J Nucl Med Mol Imaging ; 49(13): 4338-4357, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35852558

RESUMO

PURPOSE: Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease. METHODS: We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer's disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration. RESULTS: In 3xTgAD mice, the observed hyperdensity was identified as amyloid-ß and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy. CONCLUSIONS: This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer's disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cálcio , Senescência Celular , Ferro , Camundongos Transgênicos , Neuroimagem , Fármacos Neuroprotetores/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas tau/metabolismo , Raios X
5.
J Thromb Thrombolysis ; 54(3): 382-392, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36125640

RESUMO

INTRODUCTION: The aim of this study was to evaluate the association of lipoprotein(a) [Lp(a)] levels with long-term outcome in patients with recent history of myocardial infarction (MI), and to investigate if diabetes may influence this association. METHODS: Consecutive MI patients who underwent urgent/emergent coronary angiography from February 2013 to June 2019 were prospectively collected. The primary outcome was the composite of MI recurrence and all-cause death. The propensity score weighting technique was used to account for covariates potentially influencing the relationship between Lp(a) levels and the study outcomes. RESULTS: The study population consisted of 1018 post-MI patients (median age 63 years). Diabetes was reported in 280 patients (27.5%), who showed lower Lp(a) levels than patients without diabetes (p = 0.026). At a median follow-up of 1121 days, the primary outcome was reported in 182 patients (17.9%). At univariable Cox regression analysis, Lp(a) was associated with the risk of the primary outcome in the overall population and in non-diabetic patients, but not in diabetics. The adjusted Cox regression analysis confirmed the independent association between Lp(a) values and the primary outcome in non-diabetic patients, but not in diabetics.Lp(a) levels > 70 mg/dL were independently associated with the risk of the primary outcome in non-diabetic patients (adjusted HR: 2.839; 95% CI, 1.382-5.832), but not in diabetics. CONCLUSIONS: In this real-world post-MI population, increasing Lp(a) levels were significantly associated with the risk of recurrent MI and all-cause death, and very high Lp(a) serum concentration independently predicted long-term outcome in non-diabetic patients, but not in diabetics.


Assuntos
Diabetes Mellitus , Lipoproteína(a)/sangue , Infarto do Miocárdio , Angiografia Coronária , Humanos , Pessoa de Meia-Idade , Infarto do Miocárdio/etiologia , Fatores de Risco
6.
Eur J Neurosci ; 54(9): 7109-7124, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655118

RESUMO

Pilots and crew of domestic flights are exposed to transient periods of mild reductions of partial pressure of inspired oxygen each day, and this might have functional consequence on their performance in the long range. Here, we exposed mice to mild reductions of oxygen exposure (ROE) four times per day for 21 days by lowering oxygen partial pressure to levels corresponding to an altitude of about 2300 m, which is the quote of pressurization of the air cabin. Four groups of mice were studied: unstressed or stressed mice exposed to ROE or normoxic conditions. Mice were exposed to chronic unpredictable stress (CUS) for 28 days, and ROE was delivered in the last 21 days of CUS. In normoxic mice, CUS caused anhedonia in the sucrose preference test, anxiety-like behaviour in the open field test, learning impairment in the Morris water maze, reduced hippocampal neurogenesis, increased serum corticosterone levels and increased expression of depression-related genes (Pclo, Mthfr and Grm5) in the hippocampus. All these changes were reversed by ROE, which had little or no effect in unstressed mice. These findings suggest that ROE simulating air cabin conditions of domestic flights may enhance resilience to stress improving mood, anxiety and learning ability.


Assuntos
Hipocampo , Oxigênio , Resiliência Psicológica , Estresse Psicológico/psicologia , Aeronaves , Animais , Ansiedade , Depressão , Camundongos , Pressão Parcial
7.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575829

RESUMO

Bisphenol A (BPA) is largely used as a monomer in some types of plastics. It accumulates in tissues and fluids and is able to bypass the placental barrier, affecting various organs and systems. Due to huge developmental processes, children, foetuses, and neonates could be more sensitive to BPA-induced toxicity. To investigate the multi-systemic effects of chronic exposure to a low BPA dose (100 µg/L), pregnant Wistar rats were exposed to BPA in drinking water during gestation and lactation. At weaning, newborn rats received the same treatments as dams until sex maturation. Free and conjugated BPA levels were measured in plasma and adipose tissue; the size of cerebral ventricles was analysed in the brain; morpho-functional and molecular analyses were carried out in the liver with a focus on the expression of inflammatory cytokines and Sirtuin 1 (Sirt1). Higher BPA levels were found in plasma and adipose tissue from BPA treated pups (17 PND) but not in weaned animals. Lateral cerebral ventricles were significantly enlarged in lactating and weaned BPA-exposed animals. In addition, apart from microvesicular steatosis, liver morphology did not exhibit any statistically significant difference for morphological signs of inflammation, hypertrophy, or macrovesicular steatosis, but the expression of inflammatory cytokines, Sirt1, its natural antisense long non-coding RNA (Sirt1-AS LncRNA) and histone deacetylase 1 (Hdac1) were affected in exposed animals. In conclusion, chronic exposure to a low BPA dose could increase the risk for disease in adult life as a consequence of higher BPA circulating levels and accumulation in adipose tissue during the neonatal period.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Água Potável/química , Exposição Ambiental/efeitos adversos , Avaliação do Impacto na Saúde , Fenóis/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Tecido Adiposo/metabolismo , Animais , Modelos Animais de Doenças , Água Potável/análise , Feminino , Imuno-Histoquímica , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Lactação/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , NAD/metabolismo , Estresse Oxidativo , Gravidez , Ratos , Sirtuína 1/metabolismo , Poluentes Químicos da Água/administração & dosagem , Desmame
8.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218062

RESUMO

Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.


Assuntos
Produtos Biológicos/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Suplementos Nutricionais , Saúde/normas , Berberina/administração & dosagem , Berberina/uso terapêutico , Produtos Biológicos/administração & dosagem , Brassica/química , Curcumina/administração & dosagem , Curcumina/uso terapêutico , Quercetina/administração & dosagem , Quercetina/uso terapêutico , Resveratrol/administração & dosagem , Resveratrol/uso terapêutico , Spirulina/química
9.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274207

RESUMO

Diabetes mellitus is a common disease that affects 3⁻5% of the general population in Italy. In some countries of northern Europe or in North America, it can even affect 6⁻8% of the population. Of great concern is that the number of cases of diabetes is constantly increasing, probably due to the increase in obesity and the sedentary nature of the population. According to the World Health Organization, in the year 2030 there will be 360 million people with diabetes, compared to 170 million in 2000. This has important repercussions on the lives of patients and their families, and on health systems that offer assistance to patients. In this review, we try to describe in an organized way the pathophysiological continuity between diabetes mellitus, endothelial dysfunction, and platelet hyperaggregation, highlighting the main molecular mechanisms involved and the interconnections.


Assuntos
Diabetes Mellitus/fisiopatologia , Endotélio Vascular/fisiopatologia , Doenças Vasculares/fisiopatologia , Animais , Humanos , Modelos Biológicos , Agregação Plaquetária
10.
J Synchrotron Radiat ; 23(1): 106-10, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698051

RESUMO

TeraFERMI is the new terahertz (THz) beamline for pump-probe studies on the femtosecond time-scale, under construction at the FERMI free-electron laser (FEL) facility in Trieste, Italy. The beamline will take advantage of the coherent radiation emitted by the spent electrons from the FEL undulators, before being dumped. This will result in short, coherent, high-power THz pulses to be used as a pump beam, in order to modulate structural properties of matter, thereby inducing phase transitions. The TeraFERMI beamline collects THz radiation in the undulator hall and guides it along a beam pipe which is approximately 30 m long, extending across the safety hutch and two shielding walls. Here the optical design, which will allow the efficient transport of the emitted THz radiation in the experimental hall, is presented.

11.
Nano Lett ; 15(1): 386-91, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25422163

RESUMO

Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 µm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

12.
Pharmacol Res ; 99: 258-68, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26145279

RESUMO

Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors.


Assuntos
Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Proteínas tau/metabolismo , Animais , Feminino , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transmissão Sináptica/efeitos dos fármacos
13.
Nutrients ; 16(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474769

RESUMO

In recent decades, as a result of rising mortality rates due to cardiovascular diseases (CVDs), there has been a growing urgency to find alternative approaches to conventional pharmaceutical treatment to prevent the onset of chronic diseases. Arthrospira platensis, commonly known as Spirulina, is a blue-green cyanobacterium, classified as a "superfood", used worldwide as a nutraceutical food supplement due to its remarkable nutritional value, lack of toxicity, and therapeutic effects. Several scientific studies have evaluated the cardioprotective role of Spirulina. This article presents a comprehensive review of the therapeutic benefits of Spirulina in improving cardio- and cerebrovascular health. It focuses on the latest experimental and clinical findings to evaluate its antihypertensive, antidiabetic, and antihyperlipidemic properties. The objective is to highlight its potential in preventing and managing risk factors associated with cardiovascular disease (CVD).


Assuntos
Doenças Cardiovasculares , Spirulina , Humanos , Suplementos Nutricionais/efeitos adversos , Hipoglicemiantes , Hipolipemiantes
14.
Materials (Basel) ; 17(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38998204

RESUMO

This study delves into the effects of titanium (Ti) doping on the optical properties of vanadium dioxide (VO2), a material well known for its metal-to-insulator transition (MIT) near room temperature. By incorporating Ti into VO2's crystal lattice, we aim to uncover the resultant changes in its physical properties, crucial for enhancing its application in smart devices. Utilizing polarized infrared micro-spectroscopy, we examined TixV1-xO2 single crystals with varying Ti concentrations (x = 0.059, x = 0.082, and x = 0.187) across different crystal phases (the conductive rutile phase and insulating monoclinic phases M1 and M2) from the far-infrared to the visible spectral range. Our findings reveal that Ti doping significantly influences the phononic spectra, introducing absorption peaks not attributed to pure VO2 or TiO2. This is especially notable with polarization along the crystal growth axis, mainly in the x = 0.187 sample. Furthermore, we demonstrate that the electronic contribution to optical conductivity in the metallic phase exhibits strong anisotropy, higher along the c axis than the a-b plane. This anisotropy, coupled with the progressive broadening of the zone center infrared active phonon modes with increasing doping, highlights the complex interplay between structural and electronic dynamics in doped VO2. Our results underscore the potential of Ti doping in fine-tuning VO2's electronic and thermochromic properties, paving the way for its enhanced application in optoelectronic devices and technologies.

15.
Food Funct ; 15(8): 4180-4192, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38506030

RESUMO

Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or ß acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds. A pressure myograph was used to perform vascular reactivity studies on mouse resistance arteries. Phytocomplex fractionation was performed on a semi-prep HPLC system and characterized by UHPLC-PDA-MS/MS coupled to mass spectrometry. Western blot analysis was performed to characterize the phosphorylation site enrolled. The entire Hop extract exerts a direct dose-dependent endothelial vascular action. The B1 subfraction, containing a high concentration of α acids, recapitulates the vascular effect of the crude extract. Its vasorelaxant action is mediated by the opening of Transient Receptor Potential Vanilloid type 4 (TRPV4), potentiated by PKCα, and subsequent involvement of endothelial small-conductance calcium-activated potassium channels (SKCa) and intermediate-conductance calcium-activated potassium channels (IKCa) that drives endothelium-dependent hyperpolarization (EDH) through heterocellular myoendothelial gap junctions (MEGJs). This is the first comprehensive investigation of the vascular function of Hop-derived α acids in resistance arteries. Overall, our data suggest that the B1 subfraction from Hop extracts, containing only α acids, has great potential to be translated into the useful armamentarium of natural bioactive compounds with cardiovascular benefits.


Assuntos
Humulus , Extratos Vegetais , Proteína Quinase C-alfa , Canais de Cátion TRPV , Vasodilatadores , Humulus/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteína Quinase C-alfa/metabolismo , Canais de Cátion TRPV/metabolismo , Camundongos , Vasodilatadores/farmacologia , Vasodilatadores/química , Masculino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Vasodilatação/efeitos dos fármacos , Camundongos Endogâmicos C57BL
16.
Antioxidants (Basel) ; 13(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38247525

RESUMO

High glucose-induced endothelial dysfunction is an important pathological feature of diabetic vasculopathy. While genome-wide studies have identified an association between type 2 diabetes mellitus (T2DM) and increased expression of a C2 calcium-dependent domain containing 4B (C2CD4B), no study has yet explored the possible direct effect of C2CD4B on vascular function. Vascular reactivity studies were conducted using a pressure myograph, and nitric oxide and oxidative stress were assessed through difluorofluorescein diacetate and dihydroethidium, respectively. We demonstrate that high glucose upregulated both mRNA and protein expression of C2CD4B in mice mesenteric arteries in a time-dependent manner. Notably, the inhibition of C2CD4B expression by genetic knockdown efficiently prevented hyperglycemia-induced oxidative stress, endothelial dysfunction, and loss of nitric oxide (NO) bioavailability. Recombinant C2CD4B evoked endothelial dysfunction of mice mesenteric arteries, an effect associated with increased reactive oxygen species (ROS) and decreased NO production. In isolated human umbilical vein endothelial cells (HUVECs), C2CD4B increased phosphorylation of endothelial nitric oxide synthase (eNOS) at the inhibitory site Thr495 and reduced eNOS dimerization. Pharmacological inhibitors of phosphoinositide 3-kinase (PI3K), Akt, and PKCα effectively attenuated oxidative stress, NO reduction, impairment of endothelial function, and eNOS uncoupling induced by C2CD4B. These data demonstrate, for the first time, that C2CD4B exerts a direct effect on vascular endothelium via a phosphoinositide 3-kinase (PI3K)/Akt/PKCα-signaling pathway, providing a new perspective on C2CD4B as a promising therapeutic target for the prevention of oxidative stress in diabetes-induced endothelial dysfunction.

17.
ESC Heart Fail ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761030

RESUMO

AIMS: We report the results of a real-world study based on heart failure (HF) patients' continuous remote monitoring strategy using the CardioMEMS system to assess the impact of this device on healthcare outcomes, costs, and patients' management and quality of life. METHODS AND RESULTS: We enrolled seven patients (69.00 ± 4.88 years; 71.43% men) with HF, implanted with CardioMEMS, and daily remote monitored to optimize both tailored adjustments of home therapy and/or hospital infusions of levosimendan. We recorded clinical, pharmacological, biochemical, and echocardiographic parameters and data on hospitalizations, emergency room access, visits, and costs. Following the implantation of CardioMEMS, we observed a 50% reduction in the total number of hospitalizations and a 68.7% reduction in the number of days in the hospital. Accordingly, improved patient quality of life was recorded with EQ-5D (pre 58.57 ± 10.29 vs. 1 year post 84.29 ± 19.02, P = 0.008). Echocardiographic data show a statistically significant improvement in both systolic pulmonary artery pressure (47.86 ± 8.67 vs. 35.14 ± 9.34, P = 0.022) and E/e' (19.33 ± 5.04 vs. 12.58 ± 3.53, P = 0.023). The Quantikine® HS High-Sensitivity Kit determined elevated interleukin-6 values at enrolment in all patients, with a statistically significant reduction after 6 months (P = 0.0211). From an economic point of view, the net savings, including the cost of CardioMEMS, were on average €1580 per patient during the entire period of observation, while the analysis performed 12 months after the implant vs. 12 months before showed a net saving of €860 per patient. The ad hoc analysis performed on the levosimendan infusions resulted in 315 days of hospital avoidance and a saving of €205 158 for the seven patients enrolled during the observation period. CONCLUSIONS: This innovative strategy prevents unplanned access to the hospital and contributes to the efficient use of healthcare facilities, human resources, and costs.

18.
Life (Basel) ; 14(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541742

RESUMO

Chronic kidney disease (CKD) is a global health issue with a rising prevalence, affecting 697.5 million people worldwide. It imposes a substantial burden, contributing to 35.8 million disability-adjusted life years (DALYs) and 1.2 million deaths in 2017. The mortality rate for CKD has increased by 41.5% between 1990 and 2017, positioning it as a significant cause of global mortality. CKD is associated with diverse health complications, impacting cardiovascular, neurological, nutritional, and endocrine aspects. One prominent complication is CKD-mineral and bone disorder (MBD), a complex condition involving dysregulation of bone turnover, mineralization, and strength, accompanied by soft tissue and vascular calcification. Alterations in mineral metabolism, including calcium, phosphate, parathyroid hormone (PTH), vitamin D, fibroblast growth factor-23 (FGF-23), and Klotho, play pivotal roles in CKD-MBD. These disturbances, observed early in CKD, contribute to the progression of bone disorders and renal osteodystrophy (ROD). Vascular calcification (VC) is a key component of CKD-MBD, accelerated by CKD. The pathophysiology involves complex processes in vascular smooth muscle cells and the formation of calciprotein particles (CPP). VC is closely linked to cardiovascular events and mortality, emphasizing its prognostic significance. Various serum markers and imaging techniques, including lateral plain X-ray, Kauppila Score, Adragao Score, and pulse wave velocity, aid in VC detection. Additionally, pQCT provides valuable information on arterial calcifications, offering an advantage over traditional scoring systems. CKD poses a substantial global health burden, and its complications, including CKD-MBD and VC, significantly contribute to morbidity and mortality. Understanding the intricate relationships between mineral metabolism, bone disorders, and vascular calcification is crucial for effective diagnosis and therapeutic interventions.

19.
Biomolecules ; 13(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671552

RESUMO

Cardiovascular diseases (CVDs) are the leading cause of death and illness in Europe and worldwide, responsible for a staggering 47% of deaths in Europe. Over the past few years, there has been increasing evidence pointing to bioactive sphingolipids as drivers of CVDs. Among them, most studies place emphasis on the cardiovascular effect of ceramides and sphingosine-1-phosphate (S1P), reporting correlation between their aberrant expression and CVD risk factors. In experimental in vivo models, pharmacological inhibition of de novo ceramide synthesis averts the development of diabetes, atherosclerosis, hypertension and heart failure. In humans, levels of circulating sphingolipids have been suggested as prognostic indicators for a broad spectrum of diseases. This article provides a comprehensive review of sphingolipids' contribution to cardiovascular, cerebrovascular and metabolic diseases, focusing on the latest experimental and clinical findings. Cumulatively, these studies indicate that monitoring sphingolipid level alterations could allow for better assessment of cardiovascular disease progression and/or severity, and also suggest them as a potential target for future therapeutic intervention. Some approaches may include the down-regulation of specific sphingolipid species levels in the circulation, by inhibiting critical enzymes that catalyze ceramide metabolism, such as ceramidases, sphingomyelinases and sphingosine kinases. Therefore, manipulation of the sphingolipid pathway may be a promising strategy for the treatment of cardio- and cerebrovascular diseases.


Assuntos
Ceramidas , Esfingolipídeos , Humanos , Esfingolipídeos/metabolismo , Ceramidas/metabolismo , Esfingosina/metabolismo , Pulmão/metabolismo , Ceramidases/metabolismo , Lisofosfolipídeos/metabolismo , Biomarcadores
20.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903777

RESUMO

We report a spectroscopic investigation of potassium-lithium-tantalate-niobate (KTN:Li) across its room-temperature ferroelectric phase transition, when the sample manifests a supercrystal phase. Reflection and transmission results indicate an unexpected temperature-dependent enhancement of average index of refraction from 450 nm to 1100 nm, with no appreciable accompanying increase in absorption. Second-harmonic generation and phase-contrast imaging indicate that the enhancement is correlated to ferroelectric domains and highly localized at the supercrystal lattice sites. Implementing a two-component effective medium model, the response of each lattice site is found to be compatible with giant broadband refraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA