Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 600(11): 2691-2712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35442531

RESUMO

This study investigates the pathological toe and heel gaits seen in human locomotion using neuromusculoskeletal modelling and simulation. In particular, it aims to investigate potential cause-effect relationships between biomechanical or neural impairments and pathological gaits. Toe and heel gaits are commonly present in spinal cord injury, stroke and cerebral palsy. Toe walking is mainly attributed to spasticity and contracture at plantar flexor muscles, whereas heel walking can be attributed to muscle weakness of biomechanical or neural origin. To investigate the effect of these impairments on gait, this study focuses on the soleus and gastrocnemius muscles as they contribute to ankle plantarflexion. We built a reflex circuit model based on previous work by Geyer and Herr with additional pathways affecting the plantar flexor muscles. The SCONE software, which provides optimisation tools for 2D neuromechanical simulation of human locomotion, is used to optimise the corresponding reflex parameters and simulate healthy gait. We then modelled various bilateral plantar flexor biomechanical and neural impairments, and individually introduced them in the healthy model. We characterised the resulting simulated gaits as pathological or not by comparing ankle kinematics and ankle moment with the healthy optimised gait based on metrics used in clinical studies. Our simulations suggest that toe walking can be generated by hyperreflexia, whereas muscle and neural weaknesses partially induce heel gait. Thus, this 'what if' approach is deemed of great interest as it allows investigation of the effect of various impairments on gait and suggests an important contribution of active reflex mechanisms to pathological toe gait. KEY POINTS: Pathological toe and heel gaits are commonly present in various conditions such as spinal cord injury, stroke and cerebral palsy. These conditions present various neural and biomechanical impairments, but the cause-effect relationships between these impairments and pathological gaits are difficult to establish clinically. Based on neuromechanical simulation, this study focuses on the plantar flexor muscles and builds a new reflex circuit controller to model and evaluate the potential effect of both neural and biomechanical impairments on gait. Our results suggest an important contribution of active reflex mechanisms to pathological toe gait. This 'what if' based on neuromechanical modelling is thus deemed of great interest to target potential causes of pathological gait.


Assuntos
Marcha , Modelos Biológicos , Fenômenos Biomecânicos , Paralisia Cerebral , Marcha/fisiologia , Calcanhar , Humanos , Músculo Esquelético/fisiologia , Traumatismos da Medula Espinal , Acidente Vascular Cerebral , Dedos do Pé , Caminhada/fisiologia
2.
PLoS Comput Biol ; 17(5): e1008594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010288

RESUMO

The central nervous system of humans and other animals modulates spinal cord activity to achieve several locomotion behaviors. Previous neuromechanical models investigated the modulation of human gait changing selected parameters belonging to CPGs (Central Pattern Generators) feedforward oscillatory structures or to feedback reflex circuits. CPG-based models could replicate slow and fast walking by changing only the oscillation's properties. On the other hand, reflex-based models could achieve different behaviors through optimizations of large dimensional parameter spaces. However, they could not effectively identify individual key reflex parameters responsible for gait characteristics' modulation. This study investigates which reflex parameters modulate the gait characteristics through neuromechanical simulations. A recently developed reflex-based model is used to perform optimizations with different target behaviors on speed, step length, and step duration to analyze the correlation between reflex parameters and their influence on these gait characteristics. We identified nine key parameters that may affect the target speed ranging from slow to fast walking (0.48 and 1.71 m/s) as well as a large range of step lengths (0.43 and 0.88 m) and step duration (0.51, 0.98 s). The findings show that specific reflexes during stance significantly affect step length regulation, mainly given by positive force feedback of the ankle plantarflexors' group. On the other hand, stretch reflexes active during swing of iliopsoas and gluteus maximus regulate all the gait characteristics under analysis. Additionally, the results show that the hamstrings' group's stretch reflex during the landing phase is responsible for modulating the step length and step duration. Additional validation studies in simulations demonstrated that the modulation of identified reflexes is sufficient to regulate the investigated gait characteristics. Thus, this study provides an overview of possible reflexes involved in modulating speed, step length, and step duration of human gaits.


Assuntos
Marcha/fisiologia , Locomoção/fisiologia , Modelos Neurológicos , Fenômenos Biomecânicos , Biologia Computacional , Simulação por Computador , Humanos , Modelos Anatômicos , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Sistema Musculoesquelético/anatomia & histologia , Sistema Musculoesquelético/inervação , Desempenho Psicomotor/fisiologia , Reflexo de Estiramento/fisiologia , Caminhada/fisiologia
3.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941265

RESUMO

Exoskeletons intended for partial assistance of walking should be able to follow the gait pattern of their users, via online adaptive control strategies rather than imposing predefined kinetic or kinematic profiles. NeuroMuscular Controllers (NMCs) are adaptive strategies inspired by the neuromuscular modeling methods that seek to mimic and replicate the behavior of the human nervous system and skeletal muscles during gait. This study presents a novel design of a NMC, applied for the first time to partial assistance hip exoskeletons. Rather than the two-phase (stance/swing) division used in previous designs for the modulation of reflexes, a 5-state finite state machines is designed for gait phase synchronisation. The common virtual muscle model is also modified by assuming a stiff tendon, allowing for a more analytical computation approach for the muscle state resolution. As a first validation, the performance of the controller was tested with 9 healthy subjects walking at different speeds and slopes on a treadmill. The generated torque profiles show similarity to biological torques and optimal assistance profiles in the literature. Power output profiles of the exoskeleton indicate good synchronization with the users' intended movements, reflected in predominantly positive work by the assistance. The results also highlight the adaptability of the controller to different users and walking conditions, without the need for extensive parameter tuning.


Assuntos
Exoesqueleto Energizado , Humanos , Marcha/fisiologia , Caminhada/fisiologia , Músculo Esquelético/fisiologia , Movimento , Fenômenos Biomecânicos/fisiologia
4.
J Neural Eng ; 20(6)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37757805

RESUMO

Objective.Studying the neural components regulating movement in human locomotion is obstructed by the inability to perform invasive experimental recording in the human neural circuits. Neuromechanical simulations can provide insights by modeling the locomotor circuits. Past neuromechanical models proposed control of locomotion either driven by central pattern generators (CPGs) with simple sensory commands or by a purely reflex-based network regulated by state-machine mechanisms, which activate and deactivate reflexes depending on the detected gait cycle phases. However, the physiological interpretation of these state machines remains unclear. Here, we present a physiologically plausible model to investigate spinal control and modulation of human locomotion.Approach.We propose a bio-inspired controller composed of two coupled CPGs that produce the rhythm and pattern, and a reflex-based network simulating low-level reflex pathways and Renshaw cells. This reflex network is based on leaky-integration neurons, and the whole system does not rely on changing reflex gains according to the gait cycle state. The musculoskeletal model is composed of a skeletal structure and nine muscles per leg generating movement in sagittal plane.Main results.Optimizing the open parameters for effort minimization and stability, human kinematics and muscle activation naturally emerged. Furthermore, when CPGs were not activated, periodic motion could not be achieved through optimization, suggesting the necessity of this component to generate rhythmic behavior without a state machine mechanism regulating reflex activation. The controller could reproduce ranges of speeds from 0.3 to 1.9 m s-1. The results showed that the net influence of feedback on motoneurons (MNs) during perturbed locomotion is predominantly inhibitory and that the CPGs provide the timing of MNs' activation by exciting or inhibiting muscles in specific gait phases.Significance.The proposed bio-inspired controller could contribute to our understanding of locomotor circuits of the intact spinal cord and could be used to study neuromotor disorders.


Assuntos
Geradores de Padrão Central , Humanos , Geradores de Padrão Central/fisiologia , Locomoção/fisiologia , Marcha/fisiologia , Medula Espinal/fisiologia , Reflexo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA