Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cytotherapy ; 20(12): 1486-1494, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377039

RESUMO

A significant portion of the more than 1000 candidate cell and gene therapy products currently under clinical investigation (clinicaltrials.gov) are born out of academic research centers affiliated with universities, hospitals and non-profit research institutions. Supporting these efforts are myriad academic clinical materials production facilities with more than 40 such facilities currently operational in the United States alone. In March 2018, Stanford University's Laboratory for Cell and Gene Therapy held a symposium with the leaders and staff of more than 25 similar facilities to discuss the collective experience in developing, qualifying and operating cell and gene therapy manufacturing facilities according to current Good Manufacturing Practices. Topics included facility design, construction, staffing and operations and compliance. Leaders from several institutions gave overviews of the history of development of the facilities and discussed challenges and opportunities they had experienced over the past 10-20 years of operations. Working sessions were also held to discuss specific aspects of Process Development, Manufacturing, Quality Systems, Regulatory Affairs and Business Development with all participants contributing to the discussions. We summarize here the findings of this inaugural meeting with an emphasis on best practices and suggested guidelines for operations.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Instalações Industriais e de Manufatura , Centros Médicos Acadêmicos , Humanos , Instalações Industriais e de Manufatura/legislação & jurisprudência , Instalações Industriais e de Manufatura/organização & administração , Estados Unidos
2.
Biologicals ; 56: 67-83, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30150108

RESUMO

Sessions included an overview of past cell therapy (CT) conferences sponsored by the International Alliance for Biological Standardization (IABS). The sessions highlighted challenges in the field of human pluripotent stem cells (hPSCs) and also addressed specific points on manufacturing, bioanalytics and comparability, tumorigenicity testing, storage, and shipping. Panel discussions complemented the presentations. The conference concluded that a range of new standardization groups is emerging that could help the field, but ways must be found to ensure that these efforts are coordinated. In addition, there are opportunities for regulatory convergence starting with a gap analysis of existing guidelines to determine what might be missing and what issues might be creating divergence. More specific global regulatory guidance, preferably from WHO, would be welcome. IABS and the California Institute for Regenerative Medicine (CIRM) will explore with stakeholders the development of a practical and innovative road map to support early CT product (CTP) developers.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes , Testes de Carcinogenicidade , Guias como Assunto , Humanos , Controle de Qualidade , Medicina Regenerativa
3.
Curr HIV/AIDS Rep ; 12(1): 79-87, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25578054

RESUMO

Since the demonstration of a cure of an HIV+ patient with an allogeneic stem cell transplant using naturally HIV-resistant cells, significant interest in creating similar autologous products has fueled the development of a variety of "cell engineering" approaches to stem cell therapy for HIV. Among the more well-studied strategies is the inhibition of viral entry through disruption of expression of viral co-receptors or through competitive inhibitors of viral fusion with the cell membrane. Preclinical evaluation of these approaches often starts in vitro but ultimately is tested in animal models prior to clinical implementation. In this review, we trace the development of several key approaches (meganucleases, short hairpin RNA (shRNA), and fusion inhibitors) to modification of hematopoietic stem cells designed to impart resistance to HIV to their T-cell and monocytic progeny. The basic evolution of technologies through in vitro and in vivo testing is discussed as well as the pros and cons of each approach and how the addition of postentry inhibitors may enhance the overall antiviral efficacy of these approaches.


Assuntos
Terapia Genética , Infecções por HIV/terapia , HIV/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Replicação Viral/fisiologia , Humanos , Transplante Homólogo/métodos
4.
Mol Ther ; 22(5): 952-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24576853

RESUMO

Gene therapy with hematopoietic stem and progenitor cells is a promising approach to engineering immunity to human immunodeficiency virus (HIV) that may lead to a functional cure for acquired immunodeficiency syndrome (AIDS). In support of this approach, we created lentiviral vectors with an engineered polycistronic platform derived from the endogenous MCM7 gene to express a diverse set of small antiviral RNAs and a drug resistance MGMT(P140K) marker. Multiple strategies for simultaneous expression of up to five RNA transgenes were tested. The placement and orientation of each transgene and its promoter were important determinants for optimal gene expression. Antiviral RNA expression from the MCM7 platform with a U1 promoter was sufficient to provide protection from R5-tropic HIV in macrophages and resulted in reduced hematopoietic toxicity compared with constructs expressing RNA from independent RNA polymerase III promoters. The addition of an HIV entry inhibitor and nucleolar TAR RNA decoy did not enhance antiviral potency over constructs that targeted only viral RNA transcripts. We also demonstrated selective enrichment of gene-modified cells in vivo using a humanized mouse model. The use of these less toxic, potent anti-HIV vectors expressing a drug selection marker is likely to enhance the in vivo efficacy of our stem cell gene therapy approach in treating HIV/AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/terapia , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Terapia Genética , HIV/genética , Proteínas Supressoras de Tumor/genética , Síndrome da Imunodeficiência Adquirida/genética , Síndrome da Imunodeficiência Adquirida/patologia , Síndrome da Imunodeficiência Adquirida/virologia , Animais , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Resistência a Medicamentos/genética , Vetores Genéticos/uso terapêutico , HIV/imunologia , HIV/patogenicidade , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Humanos , Lentivirus/genética , Camundongos , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Estabilidade de RNA/genética , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/metabolismo
5.
Mol Ther ; 21(6): 1259-69, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23587921

RESUMO

The HIV-1 coreceptor CCR5 is a validated target for HIV/AIDS therapy. The apparent elimination of HIV-1 in a patient treated with an allogeneic stem cell transplant homozygous for a naturally occurring CCR5 deletion mutation (CCR5(Δ32/Δ32)) supports the concept that a single dose of HIV-resistant hematopoietic stem cells can provide disease protection. Given the low frequency of naturally occurring CCR5(Δ32/Δ32) donors, we reasoned that engineered autologous CD34(+) hematopoietic stem/progenitor cells (HSPCs) could be used for AIDS therapy. We evaluated disruption of CCR5 gene expression in HSPCs isolated from granulocyte colony-stimulating factor (CSF)-mobilized adult blood using a recombinant adenoviral vector encoding a CCR5-specific pair of zinc finger nucleases (CCR5-ZFN). Our results demonstrate that CCR5-ZFN RNA and protein expression from the adenoviral vector is enhanced by pretreatment of HSPC with protein kinase C (PKC) activators resulting in >25% CCR5 gene disruption and that activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway is responsible for this activity. Importantly, using an optimized dose of PKC activator and adenoviral vector we could generate CCR5-modified HSPCs which engraft in a humanized mouse model (albeit at a reduced level) and support multilineage differentiation in vitro and in vivo. Together, these data establish the basis for improved approaches exploiting adenoviral vector delivery in the modification of HSPCs.


Assuntos
Endonucleases/genética , Genômica/métodos , Células-Tronco Hematopoéticas/citologia , Receptores CCR5/genética , Dedos de Zinco/genética , Síndrome da Imunodeficiência Adquirida/terapia , Adenoviridae/genética , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Apoptose , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Endonucleases/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Deleção de Genes , Marcação de Genes , Vetores Genéticos , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , HIV-1 , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Receptores CCR5/metabolismo
6.
Cytotherapy ; 14(7): 775-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22799276

RESUMO

Clinical trials over the last 15 years have demonstrated that cell and gene therapies for cancer, monogenic and infectious disease are feasible and can lead to long-term benefit for patients. However, these trials have been limited to proof-of-principle and were conducted on modest numbers of patients or over long periods of time. In order for these studies to move towards standard practice and commercialization, scalable technologies for the isolation, ex vivo manipulation and delivery of these cells to patients must be developed. Additionally, regulatory strategies and clinical protocols for the collection, creation and delivery of cell products must be generated. In this article we review recent progress in hematopoietic cell and gene therapy, describe some of the current issues facing the field and discuss clinical, technical and regulatory approaches used to navigate the road to product development.


Assuntos
Terapia Genética , Células-Tronco Hematopoéticas , Neoplasias/terapia , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Humanos , Imunoterapia Adotiva , Neoplasias/genética
7.
Cytotherapy ; 14(1): 114-21, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21973024

RESUMO

BACKGROUND AIMS: Regulatory requirements for the manufacturing of cell products for clinical investigation require a significant level of record-keeping, starting early in process development and continuing through to the execution and requisite follow-up of patients on clinical trials. Central to record-keeping is the management of documentation related to patients, raw materials, processes, assays and facilities. METHODS: To support these requirements, we evaluated several laboratory information management systems (LIMS), including their cost, flexibility, regulatory compliance, ongoing programming requirements and ability to integrate with laboratory equipment. After selecting a system, we performed a pilot study to develop a user-configurable LIMS for our laboratory in support of our pre-clinical and clinical cell-production activities. We report here on the design and utilization of this system to manage accrual with a healthy blood-donor protocol, as well as manufacturing operations for the production of a master cell bank and several patient-specific stem cell products. RESULTS: The system was used successfully to manage blood donor eligibility, recruiting, appointments, billing and serology, and to provide annual accrual reports. Quality management reporting features of the system were used to capture, report and investigate process and equipment deviations that occurred during the production of a master cell bank and patient products. CONCLUSIONS: Overall the system has served to support the compliance requirements of process development and phase I/II clinical trial activities for our laboratory and can be easily modified to meet the needs of similar laboratories.


Assuntos
Transplante de Células , Sistemas de Informação em Laboratório Clínico , Software/economia , Software/tendências , Doadores de Sangue/estatística & dados numéricos , Sistemas de Informação em Laboratório Clínico/economia , Sistemas de Informação em Laboratório Clínico/legislação & jurisprudência , Definição da Elegibilidade , Seguimentos , Humanos , Projetos Piloto , Guias de Prática Clínica como Assunto
8.
Placenta ; 103: 50-52, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075720

RESUMO

Umbilical cord blood is an important graft source in the treatment of many genetic, hematologic, and immunologic disorders by hematopoietic stem cell transplantation. Millions of cord blood units have been collected and stored for clinical use since the inception of cord blood banking in 1989. However, the use of cord blood in biomedical research has been limited by access to viable samples. Here, we present a cost-effective, self-sustaining model for the procurement of fresh umbilical cord blood components for research purposes within hospital-affiliated academic institutions.


Assuntos
Pesquisa Biomédica/organização & administração , Bancos de Sangue/organização & administração , Sangue Fetal , Modelos Organizacionais , Academias e Institutos/economia , Academias e Institutos/organização & administração , Academias e Institutos/normas , Pesquisa Biomédica/economia , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Bancos de Sangue/economia , Bancos de Sangue/normas , Coleta de Amostras Sanguíneas/economia , Coleta de Amostras Sanguíneas/métodos , Coleta de Amostras Sanguíneas/normas , California , Análise Custo-Benefício , Feminino , Sangue Fetal/citologia , Sangue Fetal/transplante , Transplante de Células-Tronco Hematopoéticas/economia , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/normas , Humanos , Recém-Nascido , Gravidez
9.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135108

RESUMO

Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the ß-globin gene (HBB). Ex vivo ß-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.


Assuntos
Anemia Falciforme , Compostos Heterocíclicos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Camundongos , Reprodutibilidade dos Testes , Globinas beta/genética
10.
Biol Blood Marrow Transplant ; 16(9): 1245-56, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20304086

RESUMO

Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody-derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR(+) CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8(+) CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 10(8)cells/m(2), 7 at 10(9)cells/m(2), and 3 at 2 x 10(9)cells/m(2)) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.


Assuntos
Transferência Adotiva/métodos , Antígenos CD19/imunologia , Antígenos CD20/imunologia , Linfoma de Células B/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/transplante , Transgenes/imunologia , Antígenos CD19/biossíntese , Antígenos CD19/genética , Antígenos CD20/biossíntese , Antígenos CD20/genética , Humanos , Tolerância Imunológica , Linfoma de Células B/imunologia , Linfoma Folicular/imunologia , Linfoma Folicular/terapia , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/terapia , Receptores de Antígenos de Linfócitos T/biossíntese , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Citotóxicos/fisiologia , Transfecção
11.
Mol Ther Methods Clin Dev ; 8: 1-7, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29034262

RESUMO

Lentiviral vectors are a common tool used to introduce new and corrected genes into cell therapy products for treatment of human diseases. Although lentiviral vectors are ideal for delivery and stable integration of genes of interest into the host cell genome, they potentially pose risks to human health, such as integration-mediated transformation and generation of a replication competent lentivirus (RCL) capable of infecting non-target cells. In consideration of the latter risk, all cell-based products modified by lentiviral vectors and intended for patient use must be tested for RCL prior to treatment of the patient. Current Food and Drug Administration (FDA) guidelines recommend use of cell-based assays to this end, which can take up to 6 weeks for results. However, qPCR-based assays are a quick alternative for rapid assessment of RCL in products intended for fresh infusion. We describe here the development and qualification of a qPCR assay based on detection of envelope gene sequences (vesicular stomatitis virus G glycoprotein [VSV-G]) for RCL in accordance with Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines. Our results demonstrate the sensitivity, linearity, specificity, and reproducibility of detection of VSV-G sequences, with a low false-positive rate. These procedures are currently being used in our phase 1 clinical investigations.

12.
Mol Ther Methods Clin Dev ; 9: 99, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29601071

RESUMO

[This corrects the article DOI: 10.1016/j.omtm.2017.09.001.].

13.
Stem Cells Dev ; 16(5): 757-70, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17999597

RESUMO

Transplantation of pancreatic islet cells is the only known potential cure for diabetes mellitus. However, the difficulty in obtaining sufficient numbers of purified islets for transplantation severely limits its use. A renewable and clinically accessible source of stem cells capable of differentiating into insulin-secreting beta-cells might circumvent this limitation. Here, we report that human fetal bone marrow (BM)-derived mesodermal progenitor cells (MPCs) possess the potential to generate insulinsecreting islet-like clusters (ISILCs) when injected into human fetal pancreatic tissues implanted in severe combined immunodeficiency (SCID) mice. Seven essential genes involved in pancreatic endocrine development, including insulin, glucagon, somatostatin, pdx-1, glut-2, nkx 2.2, and nkx 6.1, are expressed in these BM-MPC-derived ISILCs, suggesting that ISILCs are generated through neogenesis of BM-MPCs. Our data further suggest that differentiation of BM-MPCs into ISILCs is not mediated by cell fusion. Insulin secretion from these ISILCs is regulated by glucose concentration in vitro, and transplantation of purified ISILCs normalizes hyperglycemia in streptozocin (STZ)- induced nonobese diabetic (NOD)/SCID mice.


Assuntos
Células da Medula Óssea/citologia , Células Secretoras de Insulina/citologia , Mesoderma/citologia , Células-Tronco/citologia , Animais , Adesão Celular , Fusão Celular , Proliferação de Células , Análise Citogenética , Feto/citologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos SCID , Fenótipo
14.
Syst Rev ; 6(1): 120, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651620

RESUMO

BACKGROUND: Cellular-based therapies represent a platform technology within the rapidly expanding field of regenerative medicine and are distinct from conventional therapeutics-offering a unique approach to managing what were once considered untreatable diseases. Despite a significant increase in basic science activity within the cell therapy arena, alongside a growing portfolio of cell therapy trials and promising investment, the translation of cellular-based therapeutics from "bench to bedside" remains challenging, and the number of industry products available for widespread clinical use remains comparatively low. This systematic review identifies unique intrinsic and extrinsic barriers in the cell-based therapy domain. METHODS/DESIGN: Eight electronic databases will be searched, specifically Medline, EMBASE (OvidSP), BIOSIS & Web of Science, Cochrane Library & HEED, EconLit (ProQuest), WHOLIS WHO Library Database, PAIS International (ProQuest), and Scopus. Addition to this gray literature was searched by manually reviewing relevant work. All identified articles will be subjected for review by two authors who will decide whether or not each article passes our inclusion/exclusion criteria. Eligible papers will subsequently be reviewed, and key data extracted into a pre-designed data extraction scorecard. An assessment of the perceived impact of broad commercial barriers to the adoption of cell-based therapies will be conducted. These broad categories will include manufacturing, regulation and intellectual property, reimbursement, clinical trials, clinical adoption, ethics, and business models. This will inform further discussion in the review. There is no PROSPERO registration number. DISCUSSION: Through a systematic search and appraisal of available literature, this review will identify key challenges in the commercialization pathway of cellular-based therapeutics and highlights significant barriers impeding successful clinical adoption. This will aid in creating an adaptable, acceptable, and harmonized approach supported by apposite regulatory frameworks and pertinent expertise throughout the respective stages of the adoption cycle to facilitate the adoption of new products and technologies in the industry.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Comércio , Análise Custo-Benefício , Medicina Regenerativa , Humanos , Revisões Sistemáticas como Assunto
16.
Mol Ther Methods Clin Dev ; 3: 16067, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27900346

RESUMO

Gene therapy for HIV-1 infection is a promising alternative to lifelong combination antiviral drug treatment. Chemokine receptor 5 (CCR5) is the coreceptor required for R5-tropic HIV-1 infection of human cells. Deletion of CCR5 renders cells resistant to R5-tropic HIV-1 infection, and the potential for cure has been shown through allogeneic stem cell transplantation with naturally occurring homozygous deletion of CCR5 in donor hematopoietic stem/progenitor cells (HSPC). The requirement for HLA-matched HSPC bearing homozygous CCR5 deletions prohibits widespread application of this approach. Thus, a strategy to disrupt CCR5 genomic sequences in HSPC using zinc finger nucleases was developed. Following discussions with regulatory agencies, we conducted IND-enabling preclinical in vitro and in vivo testing to demonstrate the feasibility and (preclinical) safety of zinc finger nucleases-based CCR5 disruption in HSPC. We report here the clinical-scale manufacturing process necessary to deliver CCR5-specific zinc finger nucleases mRNA to HSPC using electroporation and the preclinical safety data. Our results demonstrate effective biallelic CCR5 disruption in up to 72.9% of modified colony forming units from adult mobilized HSPC with maintenance of hematopoietic potential in vitro and in vivo. Tumorigenicity studies demonstrated initial product safety; further safety and feasibility studies are ongoing in subjects infected with HIV-1 (NCT02500849@clinicaltrials.gov).

18.
Front Genet ; 6: 357, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26858745

RESUMO

Rapid innovation in (epi)genetics and biomarker sciences is driving a new drug development and product development pathway, with the personalized medicine era dominated by biologic therapeutics and companion diagnostics. Companion diagnostics (CDx) are tests and assays that detect biomarkers and specific mutations to elucidate disease pathways, stratify patient populations, and target drug therapies. CDx can substantially influence the development and regulatory approval for certain high-risk biologics. However, despite the increasingly important role of companion diagnostics in the realization of personalized medicine, in the USA, there are only 23 Food and Drug Administration (FDA) approved companion diagnostics on the market for 11 unique indications. Personalized medicines have great potential, yet their use is currently constrained. A major factor for this may lie in the increased complexity of the companion diagnostic and corresponding therapeutic development and adoption pathways. Understanding the market dynamics of companion diagnostic/therapeutic (CDx/Rx) pairs is important to further development and adoption of personalized medicine. Therefore, data collected on a variety of factors may highlight incentives or disincentives driving the development of companion diagnostics. Statistical analysis for 36 hypotheses resulted in two significant relationships and 34 non-significant relationships. The sensitivity of the companion diagnostic was the only factor that significantly correlated with the price of the companion diagnostic. This result indicates that while there is regulatory pressure for the diagnostic and pharmaceutical industry to collaborate and co-develop companion diagnostics for the approval of personalized therapeutics, there seems to be a lack of parallel economic collaboration to incentivize development of companion diagnostics.

19.
Leuk Lymphoma ; 43(12): 2263-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12613511

RESUMO

Organ-specific stem cells have been identified in a variety of mammalian tissues. These cells hold great promise for cellular therapy if they can reliably produce functional progeny of specific lineages. A central dogma in development has been that organ-specific stem cells are restricted to making the differentiated cell types of the tissue from which they are isolated. However, a substantial body of evidence exists that stem-cell populations from neural and hematopoietic tissues can generate the other cell types, suggesting that adult organ-specific stem cells may have a broader differentiation potential than originally thought. It remains unclear whether this apparent stem cell plasticity is attributable to transdifferentiation of tissue specific stem cells, the co-existence of multiple stem cells with different potentials, or resident totipotent stem cells in these tissues. Recent evidence, in fact, indicates that there may be a fourth explanation for the "apparent" plasticity of stem cells: cell fusion. Here, the authors critically examine the existing data to assess the extent of phenotypic conversion of bone marrow-to-brain and brain-to-blood and discuss some of the contentious issues surrounding these studies. We conclude that there is strong evidence for a multipotent neurohematopoietic stem-cell population in human and mouse brain, although further characterization of these cells will be required if the goal of engineering tissues for therapeutic applications is to be realized.


Assuntos
Células Sanguíneas/citologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Movimento Celular/fisiologia , Humanos , Células-Tronco Multipotentes/citologia , Transplante de Células-Tronco
20.
Hum Gene Ther Methods ; 25(4): 221-31, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25003230

RESUMO

Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting.


Assuntos
Células-Tronco Hematopoéticas/citologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Animais , Antígenos CD34/metabolismo , Compostos Azo/farmacologia , Linhagem da Célula , Células Cultivadas , Sangue Fetal/citologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Modelos Animais , Fenótipo , Pirazóis/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Antígenos Thy-1/metabolismo , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA