Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 49(1): 33-41.e7, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021144

RESUMO

In the small intestine, type 2 responses are regulated by a signaling circuit that involves tuft cells and group 2 innate lymphoid cells (ILC2s). Here, we identified the microbial metabolite succinate as an activating ligand for small intestinal (SI) tuft cells. Sequencing analyses of tuft cells isolated from the small intestine, gall bladder, colon, thymus, and trachea revealed that expression of tuft cell chemosensory receptors is tissue specific. SI tuft cells expressed the succinate receptor (SUCNR1), and providing succinate in drinking water was sufficient to induce a multifaceted type 2 immune response via the tuft-ILC2 circuit. The helminth Nippostrongylus brasiliensis and a tritrichomonad protist both secreted succinate as a metabolite. In vivo sensing of the tritrichomonad required SUCNR1, whereas N. brasiliensis was SUCNR1 independent. These findings define a paradigm wherein tuft cells monitor microbial metabolites to initiate type 2 immunity and suggest the existence of other sensing pathways triggering the response to helminths.


Assuntos
Imunidade nas Mucosas/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ácido Succínico/farmacologia , Animais , Linhagem Celular , Feminino , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nippostrongylus/efeitos dos fármacos , Nippostrongylus/imunologia , Nippostrongylus/metabolismo , Especificidade de Órgãos , Infecções por Protozoários/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/imunologia , Especificidade da Espécie , Infecções por Strongylida/imunologia , Canais de Cátion TRPM/metabolismo , Células Th2/imunologia , Tritrichomonas/efeitos dos fármacos , Tritrichomonas/imunologia , Tritrichomonas/metabolismo
2.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37205341

RESUMO

Micronuclei are aberrant nuclear compartments that trap a portion of a cell's chromatin in a distinct organelle separate from the nucleus and are drivers of inflammation, DNA damage, chromosome instability, and chromothripsis. Many of the consequences of micronucleus formation stem from micronucleus rupture: the sudden loss of micronucleus compartmentalization, resulting in mislocalization of nuclear factors and the exposure of chromatin to the cytosol for the remainder of interphase. Micronuclei form primarily from segregation errors during mitosis, errors that also give rise to other, non-exclusive phenotypes, including aneuploidy and chromatin bridges. The stochastic formation of micronuclei and phenotypic overlap confounds the use of population-level assays or hypothesis discovery, requiring labor-intensive techniques to visually identify and follow micronucleated cells individually. In this study, we present a novel technique for automatically identifying and isolating micronucleated cells generally and cells with ruptured micronuclei specifically using a de novo neural net combined with Visual Cell Sorting. As a proof of concept, we compare the early transcriptomic responses to micronucleation and micronucleus rupture with previously published responses to aneuploidy, revealing micronucleus rupture to be a potential driver of the aneuploidy response.

3.
mBio ; 10(6)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719183

RESUMO

Interferon gamma (IFN-γ) restricts the intracellular replication of many pathogens, but the mechanism by which IFN-γ confers cell-intrinsic pathogen resistance remains unclear. For example, intracellular replication of the bacterial pathogen Legionella pneumophila in macrophages is potently curtailed by IFN-γ. However, consistent with prior studies, no individual genetic deficiency that we tested completely abolished IFN-γ-mediated control. Intriguingly, we observed that the glycolysis inhibitor 2-deoxyglucose (2DG) partially rescued L. pneumophila replication in IFN-γ-treated macrophages. 2DG inhibits glycolysis and triggers the unfolded protein response, but unexpectedly, it appears these effects are not responsible for perturbing the antimicrobial activity of IFN-γ. Instead, we found that 2DG rescues bacterial replication by inhibiting the expression of two key antimicrobial factors, inducible nitric oxide synthase (iNOS) and immune-responsive gene 1 (IRG1). Using immortalized and primary macrophages deficient in iNOS and IRG1, we confirmed that loss of both iNOS and IRG1, but not individual deficiency in either gene, partially reduced IFN-γ-mediated restriction of L. pneumophila Further, using a combinatorial CRISPR/Cas9 mutagenesis approach, we found that mutation of iNOS and IRG1 in combination with four other genes (CASP11, IRGM1, IRGM3, and NOX2) resulted in a total loss of L. pneumophila restriction by IFN-γ in primary bone marrow macrophages. Our study defines a complete set of cell-intrinsic factors required for IFN-γ-mediated restriction of an intracellular bacterial pathogen and highlights the combinatorial strategy used by hosts to block bacterial replication in macrophages.IMPORTANCELegionella pneumophila is one example among many species of pathogenic bacteria that replicate within mammalian macrophages during infection. The immune signaling factor interferon gamma (IFN-γ) blocks L. pneumophila replication in macrophages and is an essential component of the immune response to L. pneumophila and other intracellular pathogens. However, to date, no study has identified the exact molecular factors induced by IFN-γ that are required for its activity. We generated macrophages lacking different combinations of IFN-γ-induced genes in an attempt to find a genetic background in which there is a complete loss of IFN-γ-mediated restriction of L. pneumophila We identified six genes that comprise the totality of the IFN-γ-dependent restriction of L. pneumophila replication in macrophages. Our results clarify the molecular basis underlying the potent effects of IFN-γ and highlight how redundancy downstream of IFN-γ is key to prevent exploitation of macrophages by pathogens.


Assuntos
Interações Hospedeiro-Patógeno , Hidroliases/metabolismo , Interferon gama/metabolismo , Legionella pneumophila/fisiologia , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Desoxiglucose/metabolismo , Técnicas de Silenciamento de Genes , Hidroliases/genética , Doença dos Legionários/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Resposta a Proteínas não Dobradas
4.
Cell Death Discov ; 3: 17070, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29147575

RESUMO

Although much insight has been gained into the mechanisms by which activation of the inflammasome can trigger pyroptosis in mammalian cells, the precise kinetics of the end stages of pyroptosis have not been well characterized. Using time-lapse fluorescent imaging to analyze the kinetics of pyroptosis in individual murine macrophages, we observed distinct stages of cell death and cell lysis. Our data demonstrate that cell membrane permeability resulting from gasdermin D pore formation is coincident with the cessation of cell movement, loss of mitochondrial activity, and cell swelling, events that can be uncoupled from cell lysis. We propose a model of pyroptosis in which cell death can occur independently of cell lysis. The uncoupling of cell death from cell lysis may allow for better control of cytosolic contents upon activation of the inflammasome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA