Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 18(9): e1010827, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36108089

RESUMO

RNA-sequencing has led to a spectacular increase in the repertoire of bacterial sRNAs and improved our understanding of their biological functions. Bacterial sRNAs have also been found in outer membrane vesicles (OMVs), raising questions about their potential involvement in bacteria-host relationship, but few studies have documented this issue. Recent RNA-Sequencing analyses of bacterial RNA unveiled the existence of abundant very small RNAs (vsRNAs) shorter than 16 nt. These especially include tRNA fragments (tRFs) that are selectively loaded in OMVs and are predicted to target host mRNAs. Here, in Escherichia coli (E. coli), we report the existence of an abundant vsRNA, Ile-tRF-5X, which is selectively modulated by environmental stress, while remaining unaffected by inhibition of transcription or translation. Ile-tRF-5X is released through OMVs and can be transferred to human HCT116 cells, where it promoted MAP3K4 expression. Our findings provide a novel perspective and paradigm on the existing symbiosis between bacteria and human cells.


Assuntos
Escherichia coli , RNA Bacteriano , Proliferação de Células , Escherichia coli/genética , Expressão Gênica , Humanos , RNA Bacteriano/genética , RNA de Transferência/genética
2.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563619

RESUMO

MicroRNAs (miRNAs) are important gene regulatory molecules involved in a broad range of cellular activities. Although the existence and functions of miRNAs are clearly defined and well established in eukaryotes, this is not always the case for those of viral origin. Indeed, the existence of viral miRNAs is the subject of intense controversy, especially those of RNA viruses. Here, we characterized the miRNA transcriptome of cultured human liver cells infected or not with either of the two Ebola virus (EBOV) variants: Mayinga or Makona; or with Reston virus (RESTV). Bioinformatic analyses revealed the presence of two EBOV-encoded miRNAs, miR-MAY-251 and miR-MAK-403, originating from the EBOV Mayinga and Makona variants, respectively. From the miRDB database, miR-MAY-251 and miR-MAK-403 displayed on average more than 700 potential human host target candidates, 25% of which had a confidence score higher than 80%. By RT-qPCR and dual luciferase assays, we assessed the potential regulatory effect of these two EBOV miRNAs on selected host mRNA targets. Further analysis of Panther pathways unveiled that these two EBOV miRNAs, in addition to general regulatory functions, can potentially target genes involved in the hemorrhagic phenotype, regulation of viral replication and modulation of host immune defense.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , MicroRNAs , Ebolavirus/genética , Ebolavirus/metabolismo , Regulação da Expressão Gênica , Doença pelo Vírus Ebola/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Replicação Viral/genética
3.
BMC Plant Biol ; 21(1): 283, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157965

RESUMO

BACKGROUND: Sesame is a rare example of non-model and minor crop for which numerous genetic loci and candidate genes underlying features of interest have been disclosed at relatively high resolution. These progresses have been achieved thanks to the applications of the genome-wide association study (GWAS) approach. GWAS has benefited from the availability of high-quality genomes, re-sequencing data from thousands of genotypes, extensive transcriptome sequencing, development of haplotype map and web-based functional databases in sesame. RESULTS: In this paper, we reviewed the GWAS methods, the underlying statistical models and the applications for genetic discovery of important traits in sesame. A novel online database SiGeDiD ( http://sigedid.ucad.sn/ ) has been developed to provide access to all genetic and genomic discoveries through GWAS in sesame. We also tested for the first time, applications of various new GWAS multi-locus models in sesame. CONCLUSIONS: Collectively, this work portrays steps and provides guidelines for efficient GWAS implementation in sesame, a non-model crop.


Assuntos
Produtos Agrícolas/genética , Estudo de Associação Genômica Ampla/métodos , Sesamum/genética , Genes de Plantas/genética , Genoma de Planta/genética , Modelos Genéticos
4.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575920

RESUMO

Using a modified RNA-sequencing (RNA-seq) approach, we discovered a new family of unusually short RNAs mapping to ribosomal RNA 5.8S, which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. Using a new quantitative detection method that we developed, we confirmed our RNA-seq data and determined that the minimal core doRNA sequence and its 13-nt variant C-doRNA (doRNA with a 5' Cytosine) are the two most abundant doRNAs, which, together, may outnumber microRNAs. The C-doRNA/doRNA ratio is stable within species but differed between species. doRNA and C-doRNA are mainly cytoplasmic and interact with heterogeneous nuclear ribonucleoproteins (hnRNP) A0, A1 and A2B1, but not Argonaute 2. Reporter gene activity assays suggest that C-doRNA may function as a regulator of Annexin II receptor (AXIIR) expression. doRNAs are differentially expressed in prostate cancer cells/tissues and may control cell migration. These findings suggest that unusually short RNAs may be more abundant and important than previously thought.


Assuntos
Perfilação da Expressão Gênica , MicroRNAs/genética , RNA Ribossômico/genética , RNA não Traduzido/genética , Transcriptoma , Regiões 5' não Traduzidas , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Camundongos , Transporte de RNA , RNA Ribossômico 5,8S/genética , Ribonucleoproteínas/genética
5.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917562

RESUMO

Ebola virus (EBOV) is a virulent pathogen, notorious for inducing life-threatening hemorrhagic fever, that has been responsible for several outbreaks in Africa and remains a public health threat. Yet, its pathogenesis is still not completely understood. Although there have been numerous studies on host transcriptional response to EBOV, with an emphasis on the clinical features, the impact of EBOV infection on post-transcriptional regulatory elements, such as microRNAs (miRNAs), remains largely unexplored. MiRNAs are involved in inflammation and immunity and are believed to be important modulators of the host response to viral infection. Here, we have used small RNA sequencing (sRNA-Seq), qPCR and functional analyses to obtain the first comparative miRNA transcriptome (miRNome) of a human liver cell line (Huh7) infected with one of the following three EBOV strains: Mayinga (responsible for the first Zaire outbreak in 1976), Makona (responsible for the West Africa outbreak in 2013-2016) and the epizootic Reston (presumably innocuous to humans). Our results highlight specific miRNA-based immunity pathways and substantial differences between the strains beyond their clinical manifestation and pathogenicity. These analyses shed new light into the molecular signature of liver cells upon EBOV infection and reveal new insights into miRNA-based virus attack and host defense strategy.


Assuntos
Ebolavirus/metabolismo , Doença pelo Vírus Ebola/metabolismo , Fígado/metabolismo , MicroRNAs/biossíntese , RNA-Seq , Linhagem Celular Tumoral , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Humanos , Fígado/virologia , MicroRNAs/genética
6.
Int J Mol Sci ; 21(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120885

RESUMO

Proteins have long been considered to be the most prominent factors regulating so-called invasive genes involved in host-pathogen interactions. The possible role of small non-coding RNAs (sRNAs), either intracellular, secreted or packaged in outer membrane vesicles (OMVs), remained unclear until recently. The advent of high-throughput RNA-sequencing (RNA-seq) techniques has accelerated sRNA discovery. RNA-seq radically changed the paradigm on bacterial virulence and pathogenicity to the point that sRNAs are emerging as an important, distinct class of virulence factors in both gram-positive and gram-negative bacteria. The potential of OMVs, as protectors and carriers of these functional, gene regulatory sRNAs between cells, has also provided an additional layer of complexity to the dynamic host-pathogen relationship. Using a non-exhaustive approach and through examples, this review aims to discuss the involvement of sRNAs, either free or loaded in OMVs, in the mechanisms of virulence and pathogenicity during bacterial infection. We provide a brief overview of sRNA origin and importance, and describe the classical and more recent methods of identification that have enabled their discovery, with an emphasis on the theoretical lower limit of RNA sizes considered for RNA sequencing and bioinformatics analyses.


Assuntos
Bactérias Gram-Negativas/patogenicidade , Bactérias Gram-Positivas/patogenicidade , Interações entre Hospedeiro e Microrganismos , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Fatores de Virulência/genética , Animais , Biologia Computacional , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Vesículas Secretórias/genética , Vesículas Secretórias/metabolismo , Análise de Sequência de RNA , Fatores de Virulência/metabolismo
7.
Viruses ; 15(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36851710

RESUMO

Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1ß, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.


Assuntos
COVID-19 , MicroRNAs , Humanos , MicroRNAs/genética , SARS-CoV-2 , Transcriptoma , Renina , Proteômica , Proteínas Proto-Oncogênicas c-akt , COVID-19/genética
8.
Front Mol Biosci ; 9: 914991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720117

RESUMO

RNA sequencing (RNA-seq) is the gold standard for the discovery of small non-coding RNAs. Following a long-standing approach, reads shorter than 16 nucleotides (nt) are removed from the small RNA sequencing libraries or datasets. The serendipitous discovery of an eukaryotic 12 nt-long RNA species capable of modulating the microRNA from which they derive prompted us to challenge this dogma and, by expanding the window of RNA sizes down to 8 nt, to confirm the existence of functional very small RNAs (vsRNAs <16 nt). Here we report the detailed profiling of vsRNAs in Escherichia coli, E. coli-derived outer membrane vesicles (OMVs) and five other bacterial strains (Pseudomonas aeruginosa PA7, P. aeruginosa PAO1, Salmonella enterica serovar Typhimurium 14028S, Legionella pneumophila JR32 Philadelphia-1 and Staphylococcus aureus HG001). vsRNAs of 8-15 nt in length [RNAs (8-15 nt)] were found to be more abundant than RNAs of 16-30 nt in length [RNAs (16-30 nt)]. vsRNA biotypes were distinct and varied within and across bacterial species and accounted for one third of reads identified in the 8-30 nt window. The tRNA-derived fragments (tRFs) have appeared as a major biotype among the vsRNAs, notably Ile-tRF and Ala-tRF, and were selectively loaded in OMVs. tRF-derived vsRNAs appear to be thermodynamically stable with at least 2 G-C basepairs and stem-loop structure. The analyzed tRF-derived vsRNAs are predicted to target several human host mRNAs with diverse functions. Bacterial vsRNAs and OMV-derived vsRNAs could be novel players likely modulating the intricate relationship between pathogens and their hosts.

9.
Front Cardiovasc Med ; 7: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266291

RESUMO

Despite improvements in donor screening and increasing efforts to avoid contamination and the spread of pathogens in clinical platelet concentrates (PCs), the risks of transfusion-transmitted infections remain important. Relying on an ultraviolet photo activation system, pathogen reduction technologies (PRTs), such as Intercept and Mirasol, utilize amotosalen, and riboflavin (vitamin B2), respectively, to mediate inactivation of pathogen nucleic acids. Although they are expected to increase the safety and prolong the shelf life of clinical PCs, these PRTs might affect the quality and function of platelets, as recently reported. Upon activation, platelets release microparticles (MPs), which are involved in intercellular communications and regulation of gene expression, thereby mediating critical cellular functions. Here, we have used small RNA sequencing (RNA-Seq) to document the effect of PRT treatment on the microRNA profiles of platelets and derived MPs. PRT treatment did not affect the microRNA profile of platelets. However, we observed a specific loading of certain microRNAs into platelet MPs, which was impaired by treatment with Intercept or its Additive solution (SSP+). Whereas, Intercept had an impact on the microRNA profile of platelet-derived MPs, Mirasol did not impact the microRNA profile of platelets and derived MPs, compared to non-treated control. Considering that platelet MPs are able to transfer their microRNA content to recipient cells, and that this content may exert biological activities, those findings suggest that PRT treatment of clinical PCs may modify the bioactivity of the platelets and MPs to be transfused and argue for further investigations into PRT-induced changes in clinical PC content and function.

10.
Sci Rep ; 9(1): 14661, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601878

RESUMO

Extracellular vesicles (EVs) are involved in cell-to-cell communication and modulation of numerous physiological and pathological processes. EVs are found in large quantities in milk and contain several inflammation- and immunity-modulating proteins and microRNAs, through which they exert beneficial effects in several inflammatory disease models. Here, we investigated the effects of two EV subsets, concentrated from commercial cow's milk, on a murine model of colitis induced with dextran sodium sulfate (DSS). P35K EVs, isolated by ultracentrifugation at 35,000 g, and P100K EVs, isolated at 100,000 g, were previously characterized and administered by gavage to healthy and DSS-treated mice. P35K EVs and, to a lesser extent, P100K EVs improved several outcomes associated to DSS-induced colitis, modulated the gut microbiota, restored intestinal impermeability and replenished mucin secretion. Also, P35K EVs modulated innate immunity, while P100K EVs decreased inflammation through the downregulation of colitis-associated microRNAs, especially miR-125b, associated with a higher expression of the NFκB inhibitor TNFAIP3 (A20). These results suggest that different milk EV subsets may improve colitis outcomes through different, and possibly complementary, mechanisms. Further unveiling of these mechanisms might offer new opportunities for improving the life of patients with colitis and be of importance for milk processing, infant milk formulation and general public health.


Assuntos
Colite/dietoterapia , Suplementos Nutricionais , Vesículas Extracelulares/imunologia , Mucosa Intestinal/imunologia , Leite/citologia , Animais , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Leite/imunologia , Mucinas/metabolismo , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA