Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 88: 785-810, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-30917002

RESUMO

Most common neurodegenerative diseases feature deposition of protein amyloids and degeneration of brain networks. Amyloids are ordered protein assemblies that can act as templates for their own replication through monomer addition. Evidence suggests that this characteristic may underlie the progression of pathology in neurodegenerative diseases. Many different amyloid proteins, including Aß, tau, and α-synuclein, exhibit properties similar to those of infectious prion protein in experimental systems: discrete and self-replicating amyloid structures, transcellular propagation of aggregation, and transmissible neuropathology. This review discusses the contribution of prion phenomena and transcellular propagation to the progression of pathology in common neurodegenerative diseases such as Alzheimer's and Parkinson's. It reviews fundamental events such as cell entry, amplification, and transcellular movement. It also discusses amyloid strains, which produce distinct patterns of neuropathology and spread through the nervous system. These concepts may impact the development of new diagnostic and therapeutic strategies.


Assuntos
Doenças Neurodegenerativas/metabolismo , Agregação Patológica de Proteínas , Amiloide , Animais , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Proteínas tau
2.
J Biol Chem ; 300(1): 105545, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072056

RESUMO

Neurodegenerative tauopathies such as Alzheimer's disease (AD) are caused by brain accumulation of tau assemblies. Evidence suggests tau functions as a prion, and cells and animals can efficiently propagate unique, transmissible tau pathologies. This suggests a dedicated cellular replication machinery, potentially reflecting a normal physiologic function for tau seeds. Consequently, we hypothesized that healthy control brains would contain seeding activity. We have recently developed a novel monoclonal antibody (MD3.1) specific for tau seeds. We used this antibody to immunopurify tau from the parietal and cerebellar cortices of 19 healthy subjects without any neuropathology, ranging 19 to 65 years. We detected seeding in lysates from the parietal cortex, but not in the cerebellum. We also detected no seeding in brain homogenates from wildtype or human tau knockin mice, suggesting that cellular/genetic context dictates development of seed-competent tau. Seeding did not correlate with subject age or brain tau levels. We confirmed our essential findings using an orthogonal assay, real-time quaking-induced conversion, which amplifies tau seeds in vitro. Dot blot analyses revealed no AT8 immunoreactivity above background levels in parietal and cerebellar extracts and ∼1/100 of that present in AD. Based on binding to a panel of antibodies, the conformational characteristics of control seeds differed from AD, suggesting a unique underlying assembly, or structural ensemble. Tau's ability to adopt self-replicating conformations under nonpathogenic conditions may reflect a normal function that goes awry in disease states.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Cerebelo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/metabolismo , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
3.
J Biol Chem ; 299(11): 105252, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37714465

RESUMO

Neurodegenerative tauopathies are caused by the transition of tau protein from a monomer to a toxic aggregate. They include Alzheimer disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick disease (PiD). We have previously proposed that tau monomer exists in two conformational ensembles: an inert form (Mi), which does not self-assemble, and seed-competent form (Ms), which self-assembles and templates ordered assembly growth. We proposed that cis/trans isomerization of tau at P301, the site of dominant disease-associated S/L missense mutations, might underlie the transition of wild-type tau to a seed-competent state. Consequently, we created monoclonal antibodies using non-natural antigens consisting of fluorinated proline (P∗) at the analogous P270 in repeat 1 (R1), biased toward the trans-configuration at either the R1/R2 (TENLKHQP∗GGGKVQIINKK) or the R1/R3 (TENLKHQP∗GGGKVQIVYK) interfaces. Two antibodies, MD2.2 and MD3.1, efficiently immunoprecipitated soluble seeds from AD and PSP but not CBD or PiD brain samples. The antibodies efficiently stained brain samples of AD, PSP, and PiD, but not CBD. They did not immunoprecipitate or immunostain tau from the control brain. Creation of potent anti-seed antibodies based on the trans-proline epitope implicates local unfolding around P301 in pathogenesis. MD2.2 and MD3.1 may also be useful for therapy and diagnosis.


Assuntos
Tauopatias , Humanos , Doença de Alzheimer/metabolismo , Anticorpos Monoclonais/metabolismo , Encéfalo/metabolismo , Epitopos/metabolismo , Doença de Pick/metabolismo , Doença de Pick/patologia , Prolina/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo
4.
J Chem Inf Model ; 64(2): 425-434, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38191997

RESUMO

Discovering ligands for amyloid fibrils, such as those formed by the tau protein, is an area of great current interest. In recent structures, ligands bind in stacks in the tau fibrils to reflect the rotational and translational symmetry of the fibril itself; in these structures, the ligands make few interactions with the protein but interact extensively with each other. To exploit this symmetry and stacking, we developed SymDOCK, a method to dock molecules that follow the protein's symmetry. For each prospective ligand pose, we apply the symmetry operation of the fibril to generate a self-interacting and fibril-interacting stack, checking that doing so will not cause a clash between the original molecule and its image. Absent a clash, we retain that pose and add the ligand-ligand van der Waals energy to the ligand's docking score (here using DOCK3.8). We can check these geometries and energies using an implementation of ANI, a neural-network-based quantum-mechanical evaluation of the ligand stacking energies. In retrospective calculations, symmetry docking can reproduce the poses of three tau PET tracers whose structures have been determined. More convincingly, in a prospective study, SymDOCK predicted the structure of the PET tracer MK-6240 bound in a symmetrical stack to AD PHF tau before that structure was determined; the docked pose was used to determine how MK-6240 fit the cryo-EM density. In proof-of-concept studies, SymDOCK enriched known ligands over property-matched decoys in retrospective screens without sacrificing docking speed and can address large library screens that seek new symmetrical stackers. Future applications of this approach will be considered.


Assuntos
Proteínas , Estudos Prospectivos , Ligantes , Estudos Retrospectivos , Proteínas/química , Simulação de Acoplamento Molecular , Ligação Proteica , Sítios de Ligação
5.
Alzheimers Dement ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360630

RESUMO

INTRODUCTION: As aggregation underpins Tau toxicity, aggregation inhibitor peptides may have disease-modifying potential. They are therefore currently being designed and target either the 306VQIVYK311 aggregation-promoting hotspot found in all Tau isoforms or the 275VQIINK280 aggregation-promoting hotspot found in 4R isoforms. However, for any Tau aggregation inhibitor to potentially be clinically relevant for other tauopathies, it should target both hotspots to suppress aggregation of Tau isoforms, be stable, cross the blood-brain barrier, and rescue aggregation-dependent Tau phenotypes in vivo. METHODS: We developed a retro-inverso, stable D-amino peptide, RI-AG03 [Ac-rrrrrrrrGpkyk(ac)iqvGr-NH2], based on the 306VQIVYK311 hotspots which exhibit these disease-relevant attributes. RESULTS: Unlike other aggregation inhibitors, RI-AG03 effectively suppresses aggregation of multiple Tau species containing both hotspots in vitro and in vivo, is non-toxic, and suppresses aggregation-dependent neurodegenerative and behavioral phenotypes. DISCUSSION: RI-AG03 therefore meets many clinically relevant requirements for an anti-aggregation Tau therapeutic and should be explored further for its disease-modifying potential for Tauopathies. HIGHLIGHTS: Our manuscript describes the development of a novel peptide inhibitor of Tau aggregation, a retro-inverso, stable D-amino peptide called RI-AG03 that displays many clinically relevant attributes. We show its efficacy in preventing Tau aggregation in both in vitro and in vivo experimental models while being non-toxic to cells. RI-AG03 also rescues a biosensor cell line that stably expresses Tau repeat domains with the P301S mutation fused to Cer/Clo and rescues aggregation-dependent phenotypes in vivo, suppressing neurodegeneration and extending lifespan. Collectively our data describe several properties and attributes of RI-AG03 that make it a promising disease-modifying candidate to explore for reducing pathogenic Tau aggregation in Tauopathies such as Alzheimer's disease. Given the real interest in reducing Tau aggregation and the potential clinical benefit of using such agents in clinical practice, RI-AG03 should be investigated further for the treatment of Tauopathies after validation in mammalian models. Tau aggregation inhibitors are the obvious first choice as Tau-based therapies as much of Tau-mediated toxicity is aggregation dependent. Indeed, there are many research efforts focusing on this therapeutic strategy with aggregation inhibitors being designed against one of the two aggregation-promoting hotspots of the Tau protein. To our knowledge, RI-AG03 is the only peptide aggregation inhibitor that inhibits aggregation of Tau by targeting both aggregation-promoting hotspot motifs simultaneously. As such, we believe that our study will have a significant impact on drug discovery efforts in this arena.

6.
J Biol Chem ; 298(8): 102163, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35750209

RESUMO

Tau aggregation into ordered assemblies causes neurodegenerative tauopathies. We previously reported that tau monomer exists in either inert (Mi) or seed-competent (Ms) conformational ensembles and that Ms encodes strains, that is, unique, self-replicating, biologically active assemblies. It is unknown if disease begins with Ms formation followed by fibril assembly or if Ms derives from fibrils and is therefore an epiphenomenon. Here, we studied a tauopathy mouse model (PS19) that expresses full-length mutant human (1N4R) tau (P301S). Insoluble tau seeding activity appeared at 2 months of age and insoluble tau protein assemblies by immunoblot at 3 months. Tau monomer from mice aged 1 to 6 weeks, purified using size-exclusion chromatography, contained soluble seeding activity at 4 weeks, before insoluble material or larger assemblies were observed, with assemblies ranging from n = 1 to 3 tau units. By 5 to 6 weeks, large soluble assemblies had formed. This indicated that the first detectable pathological forms of tau were in fact Ms. We next examined posttranslational modifications of tau monomer from 1 to 6 weeks. We detected no phosphorylation unique to Ms in PS19 or human Alzheimer's disease brains. We conclude that tauopathy begins with formation of the Ms monomer, whose activity is phosphorylation independent. Ms then self assembles to form oligomers before it forms insoluble fibrils. The conversion of tau monomer from Mi to Ms thus constitutes the first detectable step in the initiation of tauopathy in this mouse model, with obvious implications for the origins of tauopathy in humans.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Tauopatias/metabolismo , Proteínas tau/metabolismo
7.
J Biol Chem ; 298(8): 102132, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35700826

RESUMO

Tau aggregation underlies neurodegenerative tauopathies, and transcellular propagation of tau assemblies of unique structure, i.e., strains, may underlie the diversity of these disorders. Polyanions have been reported to induce tau aggregation in vitro, but the precise trigger to convert tau from an inert to a seed-competent form in disease states is unknown. RNA triggers tau fibril formation in vitro and has been observed to associate with neurofibrillary tangles in human brain. Here, we have tested whether RNA exerts sequence-specific effects on tau assembly and strain formation. We found that three RNA homopolymers, polyA, polyU, and polyC, all bound tau, but only polyA RNA triggered seed and fibril formation. In addition, polyA:tau seeds and fibrils were sensitive to RNase. We also observed that the origin of the RNA influenced the ability of tau to adopt a structure that would form stable strains. Human RNA potently induced tau seed formation and created tau conformations that preferentially formed stable strains in a HEK293T cell model, whereas RNA from other sources, or heparin, produced strains that were not stably maintained in cultured cells. Finally, we found that soluble, but not insoluble seeds from Alzheimer's disease brain were also sensitive to RNase. We conclude that human RNA specifically induces formation of stable tau strains and may trigger the formation of dominant pathological assemblies that propagate in Alzheimer's disease and possibly other tauopathies.


Assuntos
Doença de Alzheimer , RNA , Tauopatias , Proteínas tau , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Células HEK293 , Humanos , RNA/metabolismo , Ribonucleases/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
8.
J Biol Chem ; 298(6): 102014, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525272

RESUMO

Tau assembly movement from the extracellular to intracellular space may underlie transcellular propagation of neurodegenerative tauopathies. This begins with tau binding to cell surface heparan sulfate proteoglycans, which triggers macropinocytosis. Pathological tau assemblies are proposed then to exit the vesicular compartment as "seeds" for replication in the cytoplasm. Tau uptake is highly efficient, but only ∼1 to 10% of cells that endocytose aggregates exhibit seeding. Consequently, we studied fluorescently tagged full-length (FL) tau fibrils added to native U2OS cells or "biosensor" cells expressing FL tau or repeat domain. FL tau fibrils bound tubulin. Seeds triggered its aggregation in multiple locations simultaneously in the cytoplasm, generally independent of visible exogenous aggregates. Most exogenous tau trafficked to the lysosome, but fluorescence imaging revealed a small percentage that steadily accumulated in the cytosol. Intracellular expression of Gal3-mRuby, which binds intravesicular galactosides and forms puncta upon vesicle rupture, revealed no evidence of vesicle damage following tau exposure, and most seeded cells had no evidence of endolysosome rupture. However, live-cell imaging indicated that cells with pre-existing Gal3-positive puncta were seeded at a slightly higher rate than the general population, suggesting a potential predisposing role for vesicle instability. Clearance of tau seeds occurred rapidly in both vesicular and cytosolic fractions. The lysosome/autophagy inhibitor bafilomycin inhibited vesicular clearance, whereas the proteasome inhibitor MG132 inhibited cytosolic clearance. Tau seeds that enter the cell thus have at least two fates: lysosomal clearance that degrades most tau, and entry into the cytosol, where seeds amplify, and are cleared by the proteasome.


Assuntos
Citosol , Lisossomos , Tauopatias , Proteínas tau , Doença de Alzheimer/fisiopatologia , Citosol/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Lisossomos/metabolismo , Tauopatias/metabolismo , Tauopatias/fisiopatologia , Proteínas tau/metabolismo
9.
J Biol Chem ; 295(10): 2974-2983, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974166

RESUMO

Tau aggregation underlies neurodegeneration in Alzheimer's disease and related tauopathies. We and others have proposed that transcellular propagation of pathology is mediated by Tau prions, which are ordered protein assemblies that faithfully replicate in vivo and cause specific biological effects. The prion model predicts the release of aggregates from a first-order cell and subsequent uptake into a second-order cell. The assemblies then serve as templates for their own replication, a process termed "seeding." We have previously observed that heparan sulfate proteoglycans on the cell surface mediate the cellular uptake of Tau aggregates. This interaction is blocked by heparin, a sulfated glycosaminoglycan. Indeed, heparin-like molecules, or heparinoids, have previously been proposed as a treatment for PrP prion disorders. However, heparin is not ideal for managing chronic neurodegeneration, because it is difficult to synthesize in defined sizes, may have poor brain penetration because of its negative charge, and is a powerful anticoagulant. Therefore, we sought to generate an oligosaccharide that would bind Tau and block its cellular uptake and seeding, without exhibiting anticoagulation activity. We created a compound, SN7-13, from pentasaccharide units and tested it in a range of assays that measured direct binding of Tau to glycosaminoglycans and inhibition of Tau uptake and seeding in cells. SN7-13 does not inhibit coagulation, binds Tau with low nanomolar affinity, and inhibits cellular Tau aggregate propagation similarly to standard porcine heparin. This synthetic heparinoid could facilitate the development of agents to treat tauopathy.


Assuntos
Heparina de Baixo Peso Molecular/metabolismo , Proteínas tau/metabolismo , Animais , Células HEK293 , Heparina de Baixo Peso Molecular/química , Heparina de Baixo Peso Molecular/farmacologia , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Tempo de Tromboplastina Parcial , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica , Tempo de Protrombina , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas tau/química , Proteínas tau/genética
10.
Acta Neuropathol ; 142(1): 57-71, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830330

RESUMO

Tauopathies consist of over 25 different neurodegenerative diseases that include argyrophilic grain disease (AGD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Pick's disease (PiD). Tauopathies are defined by brain accumulation of microtubule-associated protein tau in fibrillar aggregates, whose prevalence strongly correlates with dementia. Dominant mutations in tau cause neurodegenerative diseases, and most increase its aggregation propensity. Pathogenesis of tauopathies may involve pathological tau conformers that serve as templates to recruit native protein into growing assemblies and also move between brain cells to cause disease progression, similar to prions. Prions adopt pathological conformations, termed "strains," that stably propagate in living systems, and create unique patterns of neuropathology. Data from multiple laboratories now suggest that tau acts as a prion. It propagates unique strains indefinitely in cultured cells, and when these are inoculated into mouse models, they create defined neuropathological patterns, which establish a direct link between conformation and disease. In humans, distinct fibril structures are associated with different diseases, but causality has not been established as in mice. Cryo-EM structures of tau fibrils isolated from tauopathy brains reveal distinct fibril cores across disease. Interestingly, the conformation of the tau monomer unit within different fibril subtypes from the same patient appears relatively preserved. This is consistent with data that the tau monomer samples an ensemble of conformations that act as distinct pathologic templates in the formation of restricted numbers of strains. The propensity of a tau monomer to adopt distinct conformations appears to be linked to defined local motifs that expose different patterns of amyloidogenic amino acid sequences. The prion hypothesis, which predicts that protein structure dictates resultant disease, has proved particularly useful to understand the diversity of human tauopathies. The challenge now is to develop methods to rapidly classify patients according to the structure of the underlying pathological protein assemblies to achieve more accurate diagnosis and effective therapy.


Assuntos
Tauopatias/genética , Proteínas tau/genética , Animais , Humanos , Proteínas Priônicas/genética , Dobramento de Proteína
11.
Acta Neuropathol ; 142(6): 951-960, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626223

RESUMO

Chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy, is associated with behavioral, mood and cognitive impairment, including dementia. Tauopathies are neurodegenerative diseases whose neuropathological phenotypes are characterized by distinct histopathologic features of tau pathology, which progressively deposit throughout the brain. In certain tauopathies, especially Alzheimer's disease (AD), tau deposition appears to follow brain network connections. Experimental evidence suggests that the progression of tau pathology in humans, mouse and cell models could be explained by tau seeds that adopt distinct conformations and serve as templates for their own amplification to mediate transcellular propagation of pathology. Tau seeds are efficiently detected by the induction of aggregation in cell-based "biosensors" that express tau repeat domain (RD) with a disease-associated mutation (P301S) fused to complementary fluorescent protein tags (cyan and yellow fluorescent protein). Biosensors enable quantification of tau seeding in fixed and fresh-frozen brain tissue. Phospho-tau deposition in CTE follows progressive stages (I-IV), but the relationship of seeding to this deposition is unclear. We have used an established biosensor assay to independently quantify tau seeding as compared to AT8 phospho-tau histopathology in thin sections of fixed tissues of 11 brain regions from 27 patients with CTE, 5 with other tauopathies, and 5 negative controls. In contrast to prior studies of AD, we detected tau seeding late in the course of CTE (predominantly stages III and IV). It was less anatomically prevalent than AT8-positive inclusions, which were relatively widespread. We especially observed seeding in the limbic system (amygdala, thalamus, basal ganglia), which may explain the dominant cognitive and behavior impairments that characterize CTE.


Assuntos
Encéfalo/patologia , Encefalopatia Traumática Crônica/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
J Biol Chem ; 294(3): 1045-1058, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30478174

RESUMO

Parkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology. Prion strains are aggregated conformers that stably propagate in vivo and cause disease with defined incubation times and patterns of neuropathology. Indeed, tau prions have been well defined, and research suggests that both α-syn and ß-amyloid may also form strains. However, there is a lack of studies characterizing PD- versus MSA-derived α-syn strains or demonstrating stable propagation of these unique conformers between cells or animals. To fill this gap, we used an assay based on FRET that exploits a HEK293T "biosensor" cell line stably expressing α-syn (A53T)-CFP/YFP fusion proteins to detect α-syn seeds in brain extracts from PD and MSA patients. Both soluble and insoluble fractions of MSA extracts had robust seeding activity, whereas only the insoluble fractions of PD extracts displayed seeding activity. The morphology of MSA-seeded inclusions differed from PD-seeded inclusions. These differences persisted upon propagation of aggregation to second-generation biosensor cells. We conclude that PD and MSA feature α-syn conformers with very distinct biochemical properties that can be transmitted to α-syn monomers in a cell system. These findings are consistent with the idea that distinct α-syn strains underlie PD and MSA and offer possible directions for synucleinopathy diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Encéfalo/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/análise , Encéfalo/patologia , Células HEK293 , Humanos , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia
13.
Angew Chem Int Ed Engl ; 59(10): 4059-4067, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31863676

RESUMO

The consistent observation of phosphorylated tau in the pathology of Alzheimer's disease has contributed to the emergence of a model where hyperphosphorylation triggers both tau disassociation from microtubules and its subsequent aggregation. Herein, we applied a total chemical synthetic approach to site-specifically phosphorylate the microtubule binding repeat domain of tau (K18) at single (pS356) or multiple (pS356/pS262 and pS356/pS262/pS258) residues. We show that hyperphosphorylation of K18 inhibits 1) its aggregation in vitro, 2) its seeding activity in cells, 3) its binding to microtubules, and 4) its ability to promote microtubule polymerization. The inhibition increased with increasing the number of phosphorylated sites, with phosphorylation at S262 having the strongest effect. Our results argue against the hyperphosphorylation hypothesis and underscore the importance of revisiting the role of site-specific hyperphosphorylation in regulating tau functions in health and disease.


Assuntos
Microtúbulos/metabolismo , Proteínas tau/metabolismo , Sítios de Ligação , Humanos , Fosforilação , Agregados Proteicos , Proteínas tau/síntese química , Proteínas tau/química
14.
J Biol Chem ; 293(10): 3734-3746, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358329

RESUMO

Huntingtin N-terminal fragments (Htt-NTFs) with expanded polyglutamine tracts form a range of neurotoxic aggregates that are associated with Huntington's disease. Here, we show that aggregation of Htt-NTFs, irrespective of polyglutamine length, yields at least three phases (designated M, S, and F) that are delineated by sharp concentration thresholds and distinct aggregate sizes and morphologies. We found that monomers and oligomers make up the soluble M phase, ∼25-nm spheres dominate in the soluble S phase, and long, linear fibrils make up the insoluble F phase. Previous studies showed that profilin, an abundant cellular protein, reduces Htt-NTF aggregation and toxicity in cells. We confirm that profilin achieves its cellular effects through direct binding to the C-terminal proline-rich region of Htt-NTFs. We show that profilin preferentially binds to Htt-NTF M-phase species and destabilizes aggregation and phase separation by shifting the concentration boundaries for phase separation to higher values through a process known as polyphasic linkage. Our experiments, aided by coarse-grained computer simulations and theoretical analysis, suggest that preferential binding of profilin to the M-phase species of Htt-NTFs is enhanced through a combination of specific interactions between profilin and polyproline segments and auxiliary interactions between profilin and polyglutamine tracts. Polyphasic linkage may be a general strategy that cells utilize to regulate phase behavior of aggregation-prone proteins. Accordingly, detailed knowledge of phase behavior and an understanding of how ligands modulate phase boundaries may pave the way for developing new therapeutics against a variety of aggregation-prone proteins.


Assuntos
Proteína Huntingtina/metabolismo , Modelos Moleculares , Profilinas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Substituição de Aminoácidos , Sítios de Ligação , Fluorescência , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/ultraestrutura , Processamento de Imagem Assistida por Computador , Ligantes , Microscopia Eletrônica de Transmissão , Mutação , Coloração Negativa , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/ultraestrutura , Ácido Poliglutâmico/química , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Profilinas/química , Profilinas/genética , Profilinas/ultraestrutura , Domínios Proteicos Ricos em Prolina , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espalhamento a Baixo Ângulo , Solubilidade , Termodinâmica , Triptofano/química
15.
J Biol Chem ; 293(27): 10826-10840, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29752409

RESUMO

Transcellular propagation of protein aggregate "seeds" has been proposed to mediate the progression of neurodegenerative diseases in tauopathies and α-synucleinopathies. We previously reported that tau and α-synuclein aggregates bind heparan sulfate proteoglycans (HSPGs) on the cell surface, promoting cellular uptake and intracellular seeding. However, the specificity and binding mode of these protein aggregates to HSPGs remain unknown. Here, we measured direct interaction with modified heparins to determine the size and sulfation requirements for tau, α-synuclein, and ß-amyloid (Aß) aggregate binding to glycosaminoglycans (GAGs). Varying the GAG length and sulfation patterns, we next conducted competition studies with heparin derivatives in cell-based assays. Tau aggregates required a precise GAG architecture with defined sulfate moieties in the N- and 6-O-positions, whereas the binding of α-synuclein and Aß aggregates was less stringent. To determine the genes required for aggregate uptake, we used CRISPR/Cas9 to individually knock out the major genes of the HSPG synthesis pathway in HEK293T cells. Knockouts of the extension enzymes exostosin 1 (EXT1), exostosin 2 (EXT2), and exostosin-like 3 (EXTL3), as well as N-sulfotransferase (NDST1) or 6-O-sulfotransferase (HS6ST2) significantly reduced tau uptake, consistent with our biochemical findings, and knockouts of EXT1, EXT2, EXTL3, or NDST1, but not HS6ST2 reduced α-synuclein uptake. In summary, tau aggregates display specific interactions with HSPGs that depend on GAG length and sulfate moiety position, whereas α-synuclein and Aß aggregates exhibit more flexible interactions with HSPGs. These principles may inform the development of mechanism-based therapies to block transcellular propagation of amyloid protein-based pathologies.


Assuntos
Peptídeos beta-Amiloides/química , Glicosaminoglicanos/química , Proteoglicanas de Heparan Sulfato/metabolismo , Enxofre/metabolismo , Tauopatias/patologia , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sistemas CRISPR-Cas , Glicosaminoglicanos/metabolismo , Humanos , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/genética , Sulfotransferases/metabolismo , Tauopatias/metabolismo
16.
Acta Neuropathol ; 136(1): 57-67, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752551

RESUMO

Alzheimer's disease (AD) is characterized by accumulation of tau neurofibrillary tangles (NFTs) and, according to the prion model, transcellular propagation of pathological "seeds" may underlie its progression. Staging of NFT pathology with phospho-tau antibody is useful to classify AD and primary age-related tauopathy (PART) cases. The locus coeruleus (LC) shows the earliest phospho-tau signal, whereas other studies suggest that pathology begins in the transentorhinal/entorhinal cortices (TRE/EC). The relationship of tau seeding activity, phospho-tau pathology, and progression of neurodegeneration remains obscure. Consequently, we employed an established cellular biosensor assay to quantify tau seeding activity in fixed human tissue, in parallel with AT8 phospho-tau staining of immediately adjacent sections. We studied four brain regions from each of n = 247 individuals across a range of disease stages. We detected the earliest and most robust seeding activity in the TRE/EC. The LC did not uniformly exhibit seeding activity until later NFT stages. We also detected seeding activity in the superior temporal gyrus (STG) and primary visual cortex (VC) at stages before NFTs and/or AT8-immunopositivity were detectable. AD and putative PART cases exhibited similar patterns of seeding activity that anticipated histopathology across all NFT stages. Our findings are consistent with the prion model and suggest that pathological seeding activity begins in the TRE/EC rather than in the LC. In the analysis of tauopathy, quantification of seeding activity may offer an important addition to classical histopathology.


Assuntos
Doença de Alzheimer/patologia , Córtex Entorrinal/metabolismo , Tauopatias/patologia , Lobo Temporal/metabolismo , Córtex Visual/metabolismo , Proteínas tau/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Progressão da Doença , Feminino , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação , Adulto Jovem , Proteínas tau/genética
17.
Proc Natl Acad Sci U S A ; 112(35): E4949-58, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26286986

RESUMO

Increasingly, evidence argues that many neurodegenerative diseases, including progressive supranuclear palsy (PSP), are caused by prions, which are alternatively folded proteins undergoing self-propagation. In earlier studies, PSP prions were detected by infecting human embryonic kidney (HEK) cells expressing a tau fragment [TauRD(LM)] fused to yellow fluorescent protein (YFP). Here, we report on an improved bioassay using selective precipitation of tau prions from human PSP brain homogenates before infection of the HEK cells. Tau prions were measured by counting the number of cells with TauRD(LM)-YFP aggregates using confocal fluorescence microscopy. In parallel studies, we fused α-synuclein to YFP to bioassay α-synuclein prions in the brains of patients who died of multiple system atrophy (MSA). Previously, MSA prion detection required ∼120 d for transmission into transgenic mice, whereas our cultured cell assay needed only 4 d. Variation in MSA prion levels in four different brain regions from three patients provided evidence for three different MSA prion strains. Attempts to demonstrate α-synuclein prions in brain homogenates from Parkinson's disease patients were unsuccessful, identifying an important biological difference between the two synucleinopathies. Partial purification of tau and α-synuclein prions facilitated measuring the levels of these protein pathogens in human brains. Our studies should facilitate investigations of the pathogenesis of both tau and α-synuclein prion disorders as well as help decipher the basic biology of those prions that attack the CNS.


Assuntos
Doenças Neurodegenerativas/metabolismo , Príons/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Doenças Neurodegenerativas/patologia
18.
Acta Neuropathol ; 133(1): 91-100, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27878366

RESUMO

Transcellular propagation of tau aggregates may underlie the progression of pathology in Alzheimer's disease (AD) and other tauopathies. Braak staging (B1, B2, B3) is based on phospho-tau accumulation within connected brain regions: entorhinal cortex (B1); hippocampus/limbic system (B2); and frontal and parietal lobes (B3). We previously developed a specific and sensitive assay that uses flow cytometry to quantify tissue seeding activity based on fluorescence resonance energy transfer (FRET) in cells that stably express tau reporter proteins. In a tauopathy mouse model, we have detected seeding activity far in advance of histopathological changes. It remains unknown whether individuals with AD also develop seeding activity prior to accumulation of phospho-tau. We measured tau seeding activity across four brain regions (hippocampus, frontal lobe, parietal lobe, and cerebellum) in 104 fresh-frozen human AD brain samples from all Braak stages. We observed widespread seeding activity, notably in regions predicted to be free of phospho-tau deposition, and in detergent-insoluble fractions that lacked tau detectable by ELISA. Seeding activity correlated positively with Braak stage and negatively with MMSE. Our results are consistent with early transcellular propagation of tau seeds that triggers subsequent development of neuropathology. The FRET-based seeding assay may also complement standard neuropathological classification of tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Células HEK293 , Humanos , Imuno-Histoquímica , Entrevista Psiquiátrica Padronizada , Microscopia Confocal , Índice de Gravidade de Doença
19.
Acta Neuropathol ; 133(5): 751-765, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28293793

RESUMO

The diagnosis and treatment of diseases involving tau-based pathology such as Alzheimer disease and certain frontotemporal dementias is hampered by the inability to detect pathological forms of tau with sufficient sensitivity, specificity and practicality. In these neurodegenerative diseases, tau accumulates in self-seeding filaments. For example, Pick disease (PiD) is associated with frontotemporal degeneration and accumulation of 3-repeat (3R) tau isoforms in filaments constituting Pick bodies. Exploiting the self-seeding activity of tau deposits, and using a 3R tau fragment as a substrate, we have developed an assay (tau RT-QuIC) that can detect tau seeds in 2 µl aliquots of PiD brain dilutions down to 10-7-10-9. PiD seeding activities were 100-fold higher in frontal and temporal lobes compared to cerebellar cortex. Strikingly, this test was 103- to 105-fold less responsive when seeded with brain containing predominant 4-repeat (4R) tau aggregates from cases of corticobasal degeneration, argyrophilic grain disease, and progressive supranuclear palsy. Alzheimer disease brain, with 3R + 4R tau deposits, also gave much weaker responses than PiD brain. When applied to cerebrospinal fluid samples (5 µl), tau RT-QuIC analyses discriminated PiD from non-PiD cases. These findings demonstrate that abnormal tau aggregates can be detected with high sensitivity and disease-specificity in crude tissue and fluid samples. Accordingly, this tau RT-QuIC assay exemplifies a new approach to diagnosing tauopathies and monitoring therapeutic trials using aggregated tau itself as a biomarker.


Assuntos
Encéfalo/metabolismo , Doença de Pick/líquido cefalorraquidiano , Paralisia Supranuclear Progressiva/patologia , Tauopatias/líquido cefalorraquidiano , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Pick/diagnóstico , Doença de Pick/patologia , Isoformas de Proteínas/líquido cefalorraquidiano , Paralisia Supranuclear Progressiva/líquido cefalorraquidiano , Paralisia Supranuclear Progressiva/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia
20.
Proc Natl Acad Sci U S A ; 111(41): E4376-85, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25261551

RESUMO

Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer's disease, this model predicts that tau seeds propagate pathology through the brain via cell-cell transfer in neural networks. The critical role of tau seeding activity is untested, however. It is unknown whether seeding anticipates and correlates with subsequent development of pathology as predicted for a causal agent. One major limitation has been the lack of a robust assay to measure proteopathic seeding activity in biological specimens. We engineered an ultrasensitive, specific, and facile FRET-based flow cytometry biosensor assay based on expression of tau or synuclein fusions to CFP and YFP, and confirmed its sensitivity and specificity to tau (∼ 300 fM) and synuclein (∼ 300 pM) fibrils. This assay readily discriminates Alzheimer's disease vs. Huntington's disease and aged control brains. We then carried out a detailed time-course study in P301S tauopathy mice, comparing seeding activity versus histological markers of tau pathology, including MC1, AT8, PG5, and Thioflavin S. We detected robust seeding activity at 1.5 mo, >1 mo before the earliest histopathological stain. Proteopathic tau seeding is thus an early and robust marker of tauopathy, suggesting a proximal role for tau seeds in neurodegeneration.


Assuntos
Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Biomarcadores/metabolismo , Técnicas Biossensoriais , Células Cultivadas , Modelos Animais de Doenças , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Camundongos Transgênicos , Proteínas Mutantes/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA