Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Metab Eng ; 82: 89-99, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325641

RESUMO

Precise control over mammalian cell growth dynamics poses a major challenge in biopharmaceutical manufacturing. Here, we present a multi-level cell engineering strategy for the tunable regulation of growth phases in mammalian cells. Initially, we engineered mammalian death phase by employing CRISPR/Cas9 to knockout pro-apoptotic proteins Bax and Bak, resulting in a substantial attenuation of apoptosis by improving cell viability and extending culture lifespan. The second phase introduced a growth acceleration system, akin to a "gas pedal", based on an abscidic acid inducible system regulating cMYC gene expression, enabling rapid cell density increase and cell cycle control. The third phase focused on a stationary phase inducing system, comparable to a "brake pedal". A tetracycline inducible genetic circuit based on BLIMP1 gene led to cell growth cessation and arrested cell cycle upon activation. Finally, we developed a dual controllable system, combining the "gas and brake pedals", enabling for dynamic and precise orchestration of mammalian cell growth dynamics. This work exemplifies the application of synthetic biology tools and combinatorial cell engineering, offering a sophisticated framework for manipulating mammalian cell growth and providing a unique paradigm for reprogramming cell behaviour for enhancing biopharmaceutical manufacturing and further biomedical applications.


Assuntos
Produtos Biológicos , Redes Reguladoras de Genes , Divisão Celular , Sistemas CRISPR-Cas , Engenharia Genética/métodos , Engenharia Celular
2.
Crit Rev Biotechnol ; 43(4): 628-645, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35465810

RESUMO

Mammalian cell factories (in particular the CHO cell system) have been crucial in the rise of biopharmaceuticals. Mammalian cells have compartmentalized organelles where intricate networks of proteins manufacture highly sophisticated biopharmaceuticals in a specialized production pipeline - the secretory pathway. In the bioproduction context, the secretory pathway functioning is key for the effectiveness of cell factories to manufacture these life-changing medicines. This review describes the molecular components and events involved in the secretory pathway, and provides a comprehensive summary of the intracellular steps limiting the production of therapeutic proteins as well as the achievements in engineering CHO cell secretory machinery. We also consider antibody-producing plasma cells (so called "professional" secretory cells) to explore the mechanisms underpinning their unique secretory function/features. Such understandings offer the potential to further enhancement of the current CHO cell production platforms for manufacturing next generation of biopharmaceuticals.


Assuntos
Produtos Biológicos , Via Secretória , Cricetinae , Animais , Cricetulus , Células CHO , Via Secretória/fisiologia , Proteínas Recombinantes
3.
Biotechnol Bioeng ; 120(9): 2389-2402, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37060548

RESUMO

Phenotypic stability of Chinese hamster ovary (CHO) cells over long term culture (LTC) presents one of the most pressing challenges in the development of therapeutic protein manufacturing processess. However, our current understanding of the consequences of LTC on recombinant (r-) CHO cell lines is still limited, particularly as clonally-derived cell lines present distinct production stability phenotypes. This study evaluated changes of culture performance, global gene expression, and cell metabolism of two clonally-derived CHO cell lines with a stable or unstable phenotype during the LTC (early [EP] vs. late [LP] culture passages). Our findings indicated that LTC altered the behavior of CHO cells in culture, in terms of growth, overall gene expression, and cell metabolism. Regardless whether cells were categorized as stable or unstable in terms of r-protein production, CHO cells at LP presented an earlier decline in cell viability and loss of any observable stationary phase. These changes were parallelled by the upregulation of genes involved in cell proliferation and survival pathways (i.e., MAPK/ERK, PI3K-Akt). Stable and unstable CHO cell lines both showed increased consumption of glucose and amino acids at LP, with a parallel accumulation of greater amounts of lactate and TCA cycle intermediates. In terms of production stability, we found that decreased r-protein production in the unstable cell line directly correlated to the loss in r-gene copy number and r-mRNA expression. Our data revealed that LTC produced ubiquitious effects on CHO cell phenotypes, changes that were rooted in alterations in cell transcriptome and metabolome. Overall, we found that CHO cells adapted their cellular function to proliferation and survival during the LTC, some of these changes may well have limited effects on overall yield or specific productivity of the desired r-product, but they may be critical toward the capacity of cells to handle r-proteins with specific molecular features.


Assuntos
Fosfatidilinositol 3-Quinases , Transcriptoma , Cricetinae , Animais , Cricetulus , Células CHO , Proteínas Recombinantes/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo
4.
Metab Eng ; 69: 249-261, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929420

RESUMO

The deficient secretory phenotype of Chinese hamster ovary (CHO) cells is a major limitation for high-level production of biopharmaceuticals, particularly for those with complex molecular architectures and post-translational modifications. To improve CHO cell secretory capacity, we recently engineered CHO cell hosts to overexpress BLIMP1 (CHOB), in a cell engineering strategy that transformed the cellular machinery and led to significantly higher product yields and cell-specific productivities for different rproteins. Here, as a follow-up to our previous study, we developed new CHO cell hosts that co-overexpress BLIMP1 and XBP1s ( CHOBX ), two transcription factors that together drive the professional secretory function of antibody-producing plasma cells. We found that the CHOBX cells presented an improved performance over that of CHOB cells, with better product yields and cell-specific productivities for a recombinant IgG1 and a 'difficult-to-express' EPO-Fc fusion protein. These improvements in the CHOBX-derived cell lines resulted from a series of physiological and metabolic changes due to the synergetic co-expression of BLIMP1 and XBP1s. Firstly, cells presented an inhibited cell growth and arrested cell cycle in G1/G0 phase, features that were directly linked to BLIMP1 expression levels. Secondly, cells increased protein translation (both overall and recombinant protein), expanded the endoplasmic reticulum and improved their capacity to secrete protein more effectively. Lastly, cells showed a metabolic profile favouring energy production, with a pronounced lactate switch and increased consumption of amino acids. This study highlights the value of transcription factors for reprogramming CHO cells towards a desired phenotype, offering the potential to engineer cells with new functionalities for enhanced manufacturing of recombinant therapeutic proteins.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular , Retículo Endoplasmático , Fatores de Transcrição , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Proteínas Recombinantes , Fatores de Transcrição/genética
5.
Biotechnol Bioeng ; 119(2): 550-565, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34821376

RESUMO

Environmental growth-inhibition conditions (GICs) have been used extensively for increasing cell-specific productivity (qP ) of Chinese hamster ovary (CHO) cells, with the most common being temperature downshift and sodium butyrate (NaBu) treatment. B lymphocyte-induced maturation protein-1 (BLIMP1) overexpression in CHO cells can also inhibit cell growth and increase product titers and qP . Given the similar responses, this study evaluated the individual and combined effects of BLIMP1 expression, low temperature, and NaBu treatment on culture performance, cell metabolism, and recombinant protein production of CHO cells. As expected, all three interventions decreased cell growth, arrested cells in G1/G0 cell cycle phase, and increased qP . However, CHO cells presented different responses when considering cell viability, recombinant gene expression, and cell metabolism that indicated differences in the molecular loci by which BLIMP1 and GICs generated higher productivities. Combinations of BLIMP1 expression and GICs acted synergistically to inhibit cell growth and maximize r-protein production, with the BLIMP1/NaBu condition leading to the most significant improvements in product titers and qP . This latter condition also proved to substantially increase product yields (up to 9.8 g immunoglobulin G1 [IgG1]/L and 2.2 g erythropoietin-Fc [EPO-Fc]/L) and qP (up to 179 pg/cell/day [pcd] for IgG1 and 30 pcd for EPO-Fc) in high-density perfusion cultures. These findings offered mechanistic insights about the productivity-enhancing effects of BLIMP1 and GICs, as well as their complementarity for generating highly productive processes.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Engenharia Celular/métodos , Proteínas Recombinantes , Animais , Ácido Butírico/química , Células CHO , Proliferação de Células/genética , Sobrevivência Celular , Cricetinae , Cricetulus , Meios de Cultura , Metabolômica/métodos , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Metab Eng ; 67: 237-249, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34265400

RESUMO

Chinese hamster ovary (CHO) cells present inherent limitations for processing and secretion of large amounts of recombinant proteins, especially for those requiring complex post-translational processing. To tackle these limitations, we engineered CHO host cells (CHOK1 and CHOS) to overexpress the transcription factor BLIMP1/prdm1 (a master regulator of the highly-secreting phenotype of antibody-producing plasma cells), generating novel CHO cell lines (referred to as CHOB). The CHOB cell lines exhibited decreased cell densities, prolonged stationary phase and arrested cell cycle in G1/G0 phase but simultaneously had significantly greater product titre for recombinant IgG1 (> 2-fold increase) coupled with a significantly greater cell-specific productivities (> 3-fold increase). We demonstrated that the improved productive phenotype of CHOB cells resulted from a series of changes to cell physiology and metabolism. CHOB cells showed a significantly greater ER size and increased protein synthesis and secretion capacity compared to control cells. In addition, CHOB cells presented a metabolic profile that favoured energy production to support increased recombinant protein production. This study indicated that a cell engineering approach based on BLIMP1 expression offers great potential for improving the secretory capacity of CHO cell hosts utilised for manufacture of recombinant biopharmaceuticals. Our findings also provides a greater understanding of the relationship between cell growth and productivity, valuable generic information for improving productive phenotypes for CHO cell lines during industrial cell line development.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Biotechnol Bioeng ; 118(12): 4815-4828, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34585737

RESUMO

Monoclonal antibodies are the leading class of biopharmaceuticals in terms of numbers approved for therapeutic purposes. Antigen-binding fragments (Fab) are also used as biotherapeutics and used widely in research applications. The dominant expression systems for full-length antibodies are mammalian cell-based, whereas for Fab molecules the preference has been an expression in bacterial systems. However, advances in CHO and downstream technologies make mammalian systems an equally viable option for small- and large-scale Fab production. Using a panel of full-length IgG antibodies and their corresponding Fab pair with different antigen specificities, we investigated the impact of the IgG and Fab molecule format on production from Chinese hamster ovary (CHO) cells and assessed the cellular capability to process and produce these formats. The full-length antibody format resulted in the recovery of fewer mini-pools posttransfection when compared to the corresponding Fab fragment format that could be interpreted as indicative of a greater overall burden on cells. Antibody-producing cell pools that did recover were subsequently able to achieve higher volumetric protein yields (mg/L) and specific productivity than the corresponding Fab pools. Importantly, when the actual molecules produced per cell of a given format was considered (as opposed to mass), CHO cells produced a greater number of Fab molecules per cell than obtained with the corresponding IgG, suggesting that cells were more efficient at making the smaller Fab molecule. Analysis of cell pools showed that gene copy number was not correlated to the subsequent protein production. The amount of mRNA correlated with secreted Fab production but not IgG, whereby posttranscriptional processes act to limit antibody production. In summary, we provide the first comparative description of how full-length IgG and Fab antibody formats impact on the outcomes of a cell line construction process and identify potential limitations in their production that could be targeted for engineering increases in the efficiency in the manufacture of these recombinant antibody formats.


Assuntos
Fragmentos Fab das Imunoglobulinas , Imunoglobulina G , Proteínas Recombinantes , Animais , Células CHO , Técnicas de Cultura de Células , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Fragmentos Fab das Imunoglobulinas/análise , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/análise , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
8.
Appl Microbiol Biotechnol ; 105(13): 5657-5674, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34180005

RESUMO

Bacterial expression systems remain a widely used host for recombinant protein production. However, overexpression of recombinant target proteins in bacterial systems such as Escherichia coli can result in poor solubility and the formation of insoluble aggregates. As a consequence, numerous strategies or alternative engineering approaches have been employed to increase recombinant protein production. In this case study, we present the strategies used to increase the recombinant production and solubility of 'difficult-to-express' bacterial antigens, termed Ant2 and Ant3, from Absynth Biologics Ltd.'s Clostridium difficile vaccine programme. Single recombinant antigens (Ant2 and Ant3) and fusion proteins (Ant2-3 and Ant3-2) formed insoluble aggregates (inclusion bodies) when overexpressed in bacterial cells. Further, proteolytic cleavage of Ant2-3 was observed. Optimisation of culture conditions and changes to the construct design to include N-terminal solubility tags did not improve antigen solubility. However, screening of different buffer/additives showed that the addition of 1-15 mM dithiothreitol alone decreased the formation of insoluble aggregates and improved the stability of both Ant2 and Ant3. Structural models were generated for Ant2 and Ant3, and solubility-based prediction tools were employed to determine the role of hydrophobicity and charge on protein production. The results showed that a large non-polar region (containing hydrophobic amino acids) was detected on the surface of Ant2 structures, whereas positively charged regions (containing lysine and arginine amino acids) were observed for Ant3, both of which were associated with poor protein solubility. We present a guide of strategies and predictive approaches that aim to guide the construct design, prior to expression studies, to define and engineer sequences/structures that could lead to increased expression and stability of single and potentially multi-domain (or fusion) antigens in bacterial expression systems.


Assuntos
Produtos Biológicos , Clostridioides difficile , Escherichia coli/genética , Proteínas Recombinantes de Fusão , Proteínas Recombinantes/genética , Solubilidade , Vacinas Sintéticas/genética
9.
BMC Biotechnol ; 19(1): 26, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31072369

RESUMO

BACKGROUND: Protein solubility characteristics are important determinants of success for recombinant proteins in relation to expression, purification, storage and administration. Escherichia coli offers a cost-efficient expression system. An important limitation, whether for biophysical studies or industrial-scale production, is the formation of insoluble protein aggregates in the cytoplasm. Several strategies have been implemented to improve soluble expression, ranging from modification of culture conditions to inclusion of solubility-enhancing tags. RESULTS: Surface patch analysis has been applied to predict amino acid changes that can alter the solubility of expressed recombinant human erythropoietin (rHuEPO) in E. coli, a factor that has importance for both yield and subsequent downstream processing of recombinant proteins. A set of rHuEPO proteins (rHuEPO E13K, F48D, R150D, and F48D/R150D) was designed (from the framework of wild-type protein, rHuEPO WT, via amino acid mutations) that varied in terms of positively-charged patches. A variant predicted to promote aggregation (rHuEPO E13K) decreased solubility significantly compared to rHuEPO WT. In contrast, variants predicted to diminish aggregation (rHuEPO F48D, R150D, and F48D/R150D) increased solubility up to 60% in relation to rHuEPO WT. CONCLUSIONS: These findings are discussed in the wider context of biophysical calculations applied to the family of EPO orthologues, yielding a diverse range of calculated values. It is suggested that combining such calculations with naturally-occurring sequence variation, and 3D model generation, could lead to a valuable tool for protein solubility design.


Assuntos
Eritropoetina/genética , Agregação Patológica de Proteínas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Eritropoetina/química , Eritropoetina/metabolismo , Humanos , Modelos Moleculares , Mutação , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Propriedades de Superfície
10.
Biotechnol Bioeng ; 114(10): 2348-2359, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28627739

RESUMO

Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant targets. Biotechnol. Bioeng. 2017;114: 2348-2359. © 2017 Wiley Periodicals, Inc.


Assuntos
Melhoramento Genético/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Inibidor Tecidual de Metaloproteinase-2/biossíntese , Inibidor Tecidual de Metaloproteinase-3/biossíntese , Proliferação de Células/fisiologia , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Proteínas Recombinantes/isolamento & purificação , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-3/genética
11.
Biotechnol Lett ; 36(8): 1581-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24752815

RESUMO

The endoplasmic reticulum (ER) of eukaryotic cells is involved in the synthesis and processing of proteins and lipids in the secretory pathway. These processing events that proteins undergo in the ER may present major limiting steps for recombinant protein production. Increased protein synthesis, accumulation of improperly processed or mis-folded protein can induce ER stress. To cope with ER stress, the ER has quality control mechanisms, such as the unfolded protein response (UPR) and ER-associated degradation to restore homeostasis. ER stress and UPR activation trigger multiple physiological cellular changes. Here we review cellular mechanisms that cope with ER stress and illustrate how this knowledge can be applied to increase the efficiency of recombinant protein expression.


Assuntos
Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Proteínas Recombinantes/biossíntese , Resposta a Proteínas não Dobradas , Animais , Autofagia , Estresse do Retículo Endoplasmático , Humanos
12.
Analyst ; 138(22): 6977-85, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24093128

RESUMO

UV resonance Raman (UVRR) spectroscopy combined with chemometric techniques was investigated as a physiochemical tool for monitoring secreted recombinant antibody production in cultures of Chinese hamster ovary (CHO) cells. Due to the enhanced selectivity of the UVRR, spectral variations arising from protein, small molecule substrates, and nucleic acid medium components could be measured simultaneously and we have successfully determined antibody titre. Medium samples were taken during culture of three CHO cell lines: two antibody-producing cell lines and a non-producing cell line, and analysed by UVRR spectroscopy using an excitation laser of 244 nm. Principal component analysis (PCA) was applied to the spectral sets and showed a linear trend over time for the antibody-producing cell lines that was not observed in the non-producing cell line. Partial least squares regression (PLSR) was used to predict antibody titres, glucose utilization and lactate accumulation, and compared very favourably with gold standard data acquired with the much slower techniques of ELISA and liquid chromatography. Further analysis of the UVRR spectral sets using two-dimensional correlation moving windows also revealed that spectral variations due to protein and nucleic acid concentrations in the medium during cell culture varied between each of the three cell lines investigated.


Assuntos
Formação de Anticorpos , Proteínas Recombinantes/análise , Análise Espectral Raman , Animais , Células CHO , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Análise de Componente Principal
13.
J Biotechnol ; 374: 38-48, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495115

RESUMO

Improved understanding of expression of recombinant immunoglobulin (IgG)-based therapies can decrease manufacturing process costs and bring down costs to patients. Deletion of C-terminal Lysine (C-Lys) from IgG molecules has been shown to greatly impact yield. This study set out to characterise structural components of IgG C-terminal variants which modulate protein expression by examination of the consequences of mutations at the C-terminal of IgG on expression and by the use of fluorescent C-terminal fragment fusion proteins. Cell-based and cell-free experiments were also implemented to characterise how the C-terminal differentially engages with cellular pathways to modulate expression. IgG variants engineered by removal of the C-terminal Lys were expressed at significantly lower rates than control variants by CHO (and HEK) cells. Engineered constructs of mCherry fused with short regions of the C-terminal regions of IgG mimicked the ordering of expressability observed for IgG variants. These fluorescent C-terminal fragment fusions offered the potential to profile how sequences (and point mutations) modified expression. Via combinations of cell and cell-free systems, screening across a range of variants of IgG and mCherry reporter constructs has shown that interactions between specific C-terminal amino acid sequences and the ribosome can regulate the rate and extent of expression. This study highlights the importance of amino acid sequence regulatory events determining the efficiency of production of desirable recombinant proteins, showing that wildtype C-terminal lysine is a necessary capping molecule for IgG1 expression. From a wider perspective, these data are especially significant towards the design of novel entities. The approach has also provided information about novel short C-terminal tags which may be used to provide selective synthesis of specific subunits in the production of multisubunit products. Alternative strategies for removing C-terminal amino acid heterogeneity whilst maintaining efficient rates of expression have been provided.


Assuntos
Lisina , Via Secretória , Humanos , Lisina/metabolismo , Sequência de Aminoácidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imunoglobulina G/metabolismo
14.
Sci Rep ; 13(1): 1482, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707606

RESUMO

Improving the cellular capacity of Chinese hamster ovary (CHO) cells to produce large amounts of therapeutic proteins remains a major challenge for the biopharmaceutical industry. In previous studies, we observed strong correlations between the performance of CHO cells and expression of two transcription factors (TFs), MYC and XBP1s. Here, we have evaluated the effective of overexpression of these two TFs on CHO cell productivity. To address this goal, we generated an EPO-producing cell line (CHOEPO) using a targeted integration approach, and subsequently engineered it to co-overexpress MYC and XBP1s (a cell line referred to as CHOCXEPO). Cells overexpressing MYC and XBP1s increased simultaneously viable cell densities and EPO production, leading to an enhanced overall performance in cultures. These improvements resulted from the individual effect of each TF in the cell behaviour (i.e., MYC-growth and XBP1s-productivity). An evaluation of the CHOCXEPO cells under different environmental conditions (temperature and media glucose concentration) indicated that CHOCXEPO cells increased cell productivity in high glucose concentration. This study showed the potential of combining TF-based cell engineering and process optimisation for increasing CHO cell productivity.


Assuntos
Glucose , Animais , Cricetinae , Proliferação de Células , Células CHO , Cricetulus , Proteínas Recombinantes/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
15.
Biotechnol Bioeng ; 109(8): 2093-103, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22896849

RESUMO

Chinese hamster ovary (CHO) cell lines are frequently used as hosts for the production of recombinant therapeutics, such as monoclonal antibodies, due to their ability to perform correct post-translational modifications. A potential issue when utilizing CHO cells for therapeutic protein production is the selection of cell lines that do not retain stable protein expression during long-term culture (LTC). Instability of expression impairs process yields, effective usage of time and money, and regulatory approval for the desired therapeutic. In this study, we investigated a model unstable GS-CHO cell line over a continuous period of approximately 100 generations to determine markers of mechanisms that underlie instability. In this cell line, stability of expression was retained for 40-50 generations after which time a 40% loss in antibody production was detected. The instability observed within the cell line was not due to a loss in recombinant gene copy number or decreased expression of mRNA encoding for recombinant antibody H or L chain, but was associated with lower cumulative cell time values and an apparent increased sensitivity to cellular stress (exemplified by increased mRNA expression of the stress-inducible gene GADD153). Changes were also noted in cellular metabolism during LTC (alterations to extracellular alanine accumulation, and enhanced rates of glucose and lactate utilization, during the exponential and decline phase of batch culture, respectively). Our data indicates the breadth of changes that may occur to recombinant CHO cells during LTC ranging from instability of recombinant target production at a post-mRNA level to metabolic events. Definition of the mechanisms, regulatory events, and linkages underpinning cellular phenotype changes require further detailed analysis at a molecular level.


Assuntos
Anticorpos/metabolismo , Biotecnologia/métodos , Animais , Anticorpos/genética , Células CHO , Cricetinae , Cricetulus , Instabilidade Genômica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
PLoS One ; 17(11): e0277620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374852

RESUMO

Low temperature and sodium butyrate (NaBu) are two of the most used productivity-enhancing strategies in CHO cell cultures during biopharmaceutical manufacturing. While these two approaches alter the balance in the reciprocal relationship between cell growth and productivity, we do not fully understand their mechanisms of action beyond a gross cell growth inhibition. Here, we used continuous culture to evaluate the differential effect of low temperature and NaBu supplementation on CHO cell performance and gene expression profile. We found that an increase in cell-productivity under growth-inhibiting conditions was associated with the arrest of cells in the G1/G0 phase. A transcriptome analysis revealed that the molecular mechanisms by which low temperature and NaBu arrested cell cycle in G1/G0 differed from each other through the deregulation of different cell cycle checkpoints and regulators. The individual transcriptome changes in pattern observed in response to low temperature and NaBu were retained when these two strategies were combined, leading to an additive effect in arresting the cell cycle in G1/G0 phase. The findings presented here offer novel molecular insights about the cell cycle regulation during the CHO cell bioprocessing and its implications for increased recombinant protein production. This data provides a background for engineering productivity-enhanced CHO cell lines for continuous manufacturing.


Assuntos
Técnicas de Cultura de Células , Cricetinae , Animais , Células CHO , Fase de Repouso do Ciclo Celular , Cricetulus , Proteínas Recombinantes/metabolismo , Ciclo Celular
17.
Biotechnol Bioeng ; 108(12): 3025-31, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21769861

RESUMO

Chinese hamster ovary (CHO) cells are the primary platform for commercial expression of recombinant therapeutic proteins. Obtaining maximum production from the expression platform requires optimal cell culture medium (and associated nutrient feeds). We have used metabolite profiling to define the balance of intracellular and extracellular metabolites during the production process of a CHO cell line expressing a recombinant IgG4 antibody. Using this metabolite profiling approach, it was possible to identify nutrient limitations, which acted as bottlenecks for antibody production, and subsequently develop a simple feeding regime to relieve these metabolic bottlenecks. This metabolite profiling-based strategy was used to design a targeted, low cost nutrient feed that increased cell biomass by 35% and doubled the antibody titer. This approach, with the potential for utilization in non-specialized laboratories, can be applied universally to the optimization of production of commercially important biopharmaceuticals.


Assuntos
Células CHO/química , Meios de Cultura/química , Imunoglobulina G/biossíntese , Metaboloma , Animais , Células CHO/metabolismo , Técnicas de Cultura de Células/métodos , Cricetinae , Cricetulus , Imunoglobulina G/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tecnologia Farmacêutica/métodos
18.
Biotechnol J ; 16(2): e2000081, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32271992

RESUMO

Low culture temperature enhances the cell-specific productivity of Chinese hamster ovary (CHO) cells expressing varied recombinant (r-) proteins, but the mechanisms remain unclear. Regulation of unfolded protein response (UPR) pathway genes, such as transcriptional regulatory factors and endoplasmic reticulum (ER)-resident proteins, appear to be involved in the improvements of r-protein production under low temperature conditions. The transcriptional regulation of UPR-specific targets is studied in response to decreased culture temperature in relation to production of a difficult-to-express protein. A clonally-derived CHO cell line expressing a chimeric fusion protein (human erythropoietin [hEPO] linked to a murine Fc region, hEPO-Fc) is evaluated in terms of growth, metabolism, r-protein production and UPR-/ER associated degradation (ERAD)-specific gene expression at standard (37 °C) and low (32 °C) temperature in batch and fed-batch systems. Low temperature decreased peak cell density, improved viability, generated cell cycle arrest in the G1 phase and enhanced hEPO-Fc expression in both batch and fed-batch cultures. A low culture temperature significantly upregulated genes encoding UPR-specific transcriptional activators (xbp1s, ddit3, and atf5) and ER-resident proteins (grp78, grp94, trib3, and ero1α), that are associated with folding and processing of proteins within the ER. Further, low culture temperature decreased expression of genes involved in ERAD (edem3, sels, herpud1, and syvn1) indicating a decreased potential for protein degradation.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Animais , Células CHO , Cricetinae , Cricetulus , Chaperona BiP do Retículo Endoplasmático , Humanos , Proteínas de Membrana , Camundongos , Temperatura , Ubiquitina-Proteína Ligases , Resposta a Proteínas não Dobradas/genética
19.
Curr Opin Biotechnol ; 71: 18-24, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34058525

RESUMO

HEK293 cell lines are used for the production of recombinant proteins, virus-like particles and viral vectors. Recent work has generated molecular (systems level) characterisation of HEK293 variants that has enabled re-engineering of the cells towards enhanced use for manufacture-scale production of recombinant biopharmaceuticals (assessment of 'safe harbours' for gene insertion, engineering of new variants for stable, amplifiable expression). In parallel, there have been notable advances in the bioprocessing conditions (suspension adaptation, development of defined serum-free media) that offer the potential for large-scale manufacture, a feature especially important in the drive to produce viral vectors at large-scale and at commercially viable costs for gene therapy. The combination of cell-based and bioprocess-based modification of existing HEK293 cell processes, frequently informed by understandings transferred from developments with Chinese hamster ovary cell lines, seems destined to place the HEK293 cell systems firmly as a critical platform for production of future biologically based therapeutics.


Assuntos
Vetores Genéticos , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes/genética
20.
Biotechnol Prog ; 37(2): e3099, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33169492

RESUMO

Culture systems based on spin tube reactors have been consolidated in the development of manufacturing processes based on Chinese hamster ovary (CHO) cells. Despite their widespread use, there is little information about the consequences of varying operational setting parameters on the culture performance of recombinant CHO cell lines. Here, we investigated the effect of varying working volumes and agitation speeds on cell growth, protein production, and cell metabolism of two clonally derived CHO cell lines (expressing an IgG1 and a "difficult-to-express" fusion protein). Interestingly, low culture volumes increased recombinant protein production and decreased cell growth, while high culture volumes had the opposite effect. Altering agitation speeds exacerbated or moderated the differences observed due to culture volume changes. Combining low agitation rates with high culture volumes suppressed growth and recombinant protein production in CHO cells. Meanwhile, high agitation rates narrowed the differences in culture performance between low and high working volumes. These differences were also reflected in cell metabolism, where low culture volumes enhanced oxidative metabolism (linked to a productive phenotype) and high culture volume generated a metabolic profile that was predominately glycolytic (linked to a proliferative phenotype). Our findings indicate that the culture volume influence on metabolism modulates the balance between cell growth and protein production, a key feature that may be useful to adjust CHO cells toward a more productive phenotype.


Assuntos
Técnicas de Cultura de Células/métodos , Eritropoetina/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Eritropoetina/genética , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Metaboloma , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA