Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
New Phytol ; 230(1): 60-65, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197279

RESUMO

From recent developments on how roots affect soil organic carbon (SOC) an apparent paradox has emerged where roots drive SOC stabilization causing SOC accrual, but also SOC destabilization causing SOC loss. We synthesize current results and propose the new Rhizo-Engine framework consisting of two linked components: microbial turnover and the soil physicochemical matrix. The Rhizo-Engine is driven by rhizodeposition, root turnover, and plant uptake of nutrients and water, thereby accelerating SOC turnover through both stabilization and destabilization mechanisms. This Rhizo-Engine framework emphasizes the need for a more holistic approach to study root-driven SOC dynamics. This framework would provide better understanding of plant root effects on soil carbon sequestration and the sensitivity of SOC stocks to climate and land-use changes.


Assuntos
Carbono , Solo , Sequestro de Carbono , Clima , Plantas
2.
New Phytol ; 230(2): 857-866, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33253439

RESUMO

Rhizodeposition plays an important role in below-ground carbon (C) cycling. However, quantification of rhizodeposition in intact plant-soil systems has remained elusive due to methodological issues. We used a 13 C-CO2 pulse-labelling method to quantify the contribution of rhizodeposition to below-ground respiration. Intact plant-soil cores were taken from a grassland field, and in half, shoots and roots were removed (unplanted cores). Both unplanted and planted cores were assigned to drought and nitrogen (N) treatments. Afterwards, shoots in planted cores were pulse labelled with 13 C-CO2 and then clipped to determine total below-ground respiration and its δ13 C. Simultaneously, δ13 C was measured for the respiration of live roots, soils with rhizodeposits, and unplanted treatments, and used as endmembers with which to determine root respiration and rhizodeposit C decomposition using two-source mixing models. Rhizodeposit decomposition accounted for 7-31% of total below-ground respiration. Drought reduced decomposition of both rhizodeposits and soil organic carbon (SOC), while N addition increased root respiration but not the contribution of rhizodeposit C decomposition to below-ground respiration. This study provides a new approach for the partitioning of below-ground respiration into different sources, and indicates that decomposition of rhizodeposit C is an important component of below-ground respiration that is sensitive to drought and N addition in grassland ecosystems.


Assuntos
Nitrogênio , Solo , Carbono , Secas , Ecossistema , Pradaria , Raízes de Plantas , Respiração
3.
Ecol Lett ; 21(5): 674-682, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29508508

RESUMO

Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change.


Assuntos
Dióxido de Carbono , Nitrogênio , Água , Biomassa , Pradaria , Poaceae , Solo
4.
New Phytol ; 218(3): 1036-1048, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512165

RESUMO

Rhizosphere priming effects (RPEs) play a central role in modifying soil organic matter mineralization. However, effects of tree species and intraspecific competition on RPEs are poorly understood. We investigated RPEs of three tree species (larch, ash and Chinese fir) and the impact of intraspecific competition of these species on the RPE by growing them at two planting densities for 140 d. We determined the RPE on soil organic carbon (C) decomposition, gross and net nitrogen (N) mineralization and net plant N acquisition. Differences in the RPE among species were associated with differences in plant biomass. Gross N mineralization and net plant N acquisition increased, but net N mineralization decreased, as the RPE on soil organic C decomposition increased. Intraspecific competition reduced the RPE on soil organic C decomposition, gross and net N mineralization, and net plant N acquisition, especially for ash and Chinese fir. Microbial N mining may explain the overall positive RPEs across species, whereas intensified plant-microbe competition for N may have reduced the RPE with intraspecific competition. Overall, the species-specific effects of tree species play an important role in modulating the magnitude and mechanisms of RPEs and the intraspecific competition on soil C and N dynamics.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Rizosfera , Solo/química , Árvores/fisiologia , Bactérias/crescimento & desenvolvimento , Biomassa , Dióxido de Carbono/metabolismo , Minerais/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Especificidade da Espécie
5.
Ecology ; 99(10): 2230-2239, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30157292

RESUMO

The allocation and stoichiometry of plant nutrients in leaves reflect fundamental ecosystem processes, biotic interactions, and environmental drivers such as water availability. Climate change will lead to increases in drought severity and frequency, but how canopy nutrients will respond to drought, and how these responses may vary with community composition along aridity gradients is poorly understood. We experimentally addressed this issue by reducing precipitation amounts by 66% during two consecutive growing seasons at three sites located along a natural aridity gradient. This allowed us to assess drought effects on canopy nitrogen (N) and phosphorus (P) concentrations in arid and semiarid grasslands of northern China. Along the aridity gradient, canopy nutrient concentrations were positively related to aridity, with this pattern was driven primarily by species turnover (i.e., an increase in the relative biomass of N- and P-rich species with increasing aridity). In contrast, drought imposed experimentally increased N but decreased P concentrations in plant canopies. These changes were driven by the combined effects of species turnover and intraspecific variation in leaf nutrient concentrations. In addition, the sensitivity of canopy N and P concentrations to drought varied across the three sites. Canopy nutrient concentrations were less affected by drought at drier than wetter sites, because of the opposing effects of species turnover and intraspecific variation, as well as greater drought tolerance for nutrient-rich species. These contrasting effects of long-term aridity vs. short-term drought on canopy nutrient concentrations, as well as differing sensitivities among sites in the same grassland biome, highlight the challenge of predicting ecosystem responses to future climate change.


Assuntos
Secas , Ecossistema , China , Mudança Climática , Nutrientes
6.
Oecologia ; 188(2): 633-643, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30043231

RESUMO

Both the dominance and the mass ratio hypotheses predict that plant internal nutrient cycling in ecosystems is determined by the dominant species within plant communities. We tested this hypothesis under conditions of extreme drought by assessing plant nutrient (N, P and K) uptake and resorption in response to experimentally imposed precipitation reductions in two semiarid grasslands of northern China. These two communities shared similar environmental conditions, but had different dominant species-one was dominated by a rhizomatous grass (Leymus chinensis) and the other by a bunchgrass (Stipa grandis). Results showed that responses of N to drought differed between the two communities with drought decreasing green leaf N concentration and resorption in the community dominated by the rhizomatous grass, but not in the bunchgrass-dominated community. In contrast, negative effects of drought on green leaf P and K concentrations and their resorption efficiencies were consistent across the two communities. Additionally, in each community, the effects of extreme drought on soil N, P and K supply did not change synchronously with that on green leaf N, P and K concentrations, and senesced leaf N, P and K concentrations showed no response to extreme drought. Consistent with the dominance/mass ratio hypothesis, our findings suggest that differences in dominant species and their growth form (i.e., rhizomatous vs bunch grass) play an important nutrient-specific role in mediating plant internal nutrient cycling across communities within a single region.


Assuntos
Secas , Ecossistema , China , Pradaria , Nitrogênio , Nutrientes
7.
J Environ Manage ; 224: 77-86, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30031921

RESUMO

Anthropogenic nitrogen (N) enrichment can significantly alter soil chemical properties in various ecosystems. Previous manipulative N experiments mainly focused on the intensity of N addition on soil properties by changing N input rates. It remains unclear, however, whether frequency of N addition can affect soil chemical properties. We examined the effects of frequency (2 versus 12 applications yr-1) and rate (ranging from 0 to 50 g N m-2 yr-1) of N addition on soil chemical properties of pH, base cations, soil pH buffering capacity (pHBC), and soil available micronutrients in a temperate steppe with and without mowing. Mowing significantly increased the effective cation exchange capacity (ECEC), soil exchangeable Ca and Na, available Fe, and soil pHBC when N was applied at low frequency. Low frequency of N addition significantly decreased soil pH and exchangeable Na but increased soil exchangeable Mg without mowing; however, it increased soil exchangeable Na and available Zn with mowing, while available Fe and Mn increased both with and without mowing. Higher rates of N addition (≥20 g N m-2 yr-1) decreased soil pH, ECEC and exchangeable Ca but increased soil available Fe, Mn and Cu regardless of the mowing treatment and frequency of N addition. Changes in soil organic matter, pHBC and ECEC were the main reasons affecting soil pH across mowing and N application treatments. Our results indicate that frequency of N addition played an essential role in altering soil chemical properties. Simulating N deposition via large and infrequent N additions can underestimate (exchangeable Mg and available Fe and Mn) or overestimate (soil pH and exchangeable Na) changes in soil properties. Our results further suggest that the effects of frequency of N addition on soil chemical attributes in semi-arid grassland ecosystems can be regulated by appropriate mowing management.


Assuntos
Nitrogênio , Microbiologia do Solo , Solo/química , Ecossistema
8.
Glob Chang Biol ; 23(10): 4420-4429, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28480591

RESUMO

Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1-4 years). Elevated CO2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO2 concentrations may be smaller than previously assumed.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Solo/química , Carbono , Ecossistema , Plantas
9.
Glob Chang Biol ; 23(9): 3623-3645, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145053

RESUMO

Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO2 Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement. We found models performed poorly in ambient conditions; there was a wide spread in simulated above-ground net primary productivity (range: 31-390 g C m-2  yr-1 ). Comparison with data highlighted model failures particularly with respect to carbon allocation, phenology, and the impact of water stress on phenology. Performance against the observations from single-factors treatments was also relatively poor. In addition, similar responses were predicted for different reasons across models: there were large differences among models in sensitivity to water stress and, among the N cycle models, N availability during the experiment. Models were also unable to capture observed treatment effects on phenology: they overestimated the effect of warming on leaf onset and did not allow CO2 -induced water savings to extend the growing season length. Observed interactive (CO2  × warming) treatment effects were subtle and contingent on water stress, phenology, and species composition. As the models did not correctly represent these processes under ambient and single-factor conditions, little extra information was gained by comparing model predictions against interactive responses. We outline a series of key areas in which this and future experiments could be used to improve model predictions of grassland responses to global change.


Assuntos
Pradaria , Calefação , Poaceae/crescimento & desenvolvimento , Dióxido de Carbono , Solo , Wyoming
10.
Environ Sci Technol ; 51(15): 8359-8367, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28632984

RESUMO

Biochar, a form of pyrogenic carbon, can contribute to agricultural and environmental sustainability by increasing soil reactivity. In soils, biochar could change its role over time through alterations in its surface chemistry. However, a mechanistic understanding of the aging process and its role in ionic nutrient adsorption and supply remain unclear. Here, we aged a wood biochar (550 °C) by chemical oxidation with 5-15% H2O2 and investigated the changes in surface chemistry and the adsorption behavior of ammonium and phosphate. Oxidation changed the functionality of biochar with the introduction of carboxylic and phenolic groups, a reduction of oxonium groups and the transformation of pyridine to pyridone. After oxidation, the adsorption of ammonium increased while phosphate adsorption decreased. Ammonium adsorption capacity was nonlinearly related to the biochar's surface charge density (r2 = 0.94) while electrostatic repulsion and loss of positive charge due to destruction of oxonium and pyridine, possibly caused the reduced phosphate adsorption. However, the oxidized biochar substantially adsorbed both ammonium and phosphate when biochar derived organic matter (BDOM) was included. Our results suggest that aging of biochar could reverse its capacity for the adsorption of cationic and anionic species but the inclusion of BDOM could increase ionic nutrient and contaminant retention.


Assuntos
Compostos de Amônio , Carvão Vegetal , Adsorção , Peróxido de Hidrogênio , Fosfatos , Solo
11.
Nature ; 476(7359): 202-5, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21814202

RESUMO

Global warming is predicted to induce desiccation in many world regions through increases in evaporative demand. Rising CO(2) may counter that trend by improving plant water-use efficiency. However, it is not clear how important this CO(2)-enhanced water use efficiency might be in offsetting warming-induced desiccation because higher CO(2) also leads to higher plant biomass, and therefore greater transpirational surface. Furthermore, although warming is predicted to favour warm-season, C(4) grasses, rising CO(2) should favour C(3), or cool-season plants. Here we show in a semi-arid grassland that elevated CO(2) can completely reverse the desiccating effects of moderate warming. Although enrichment of air to 600 p.p.m.v. CO(2) increased soil water content (SWC), 1.5/3.0 °C day/night warming resulted in desiccation, such that combined CO(2) enrichment and warming had no effect on SWC relative to control plots. As predicted, elevated CO(2) favoured C(3) grasses and enhanced stand productivity, whereas warming favoured C(4) grasses. Combined warming and CO(2) enrichment stimulated above-ground growth of C(4) grasses in 2 of 3 years when soil moisture most limited plant productivity. The results indicate that in a warmer, CO(2)-enriched world, both SWC and productivity in semi-arid grasslands may be higher than previously expected.


Assuntos
Dióxido de Carbono/farmacologia , Dessecação , Ecossistema , Aquecimento Global , Fotossíntese/efeitos dos fármacos , Poaceae/efeitos dos fármacos , Poaceae/crescimento & desenvolvimento , Atmosfera/química , Biomassa , Dióxido de Carbono/metabolismo , Clima Desértico , Fotossíntese/fisiologia , Estômatos de Plantas/metabolismo , Transpiração Vegetal , Poaceae/metabolismo , Estações do Ano , Solo/química , Volatilização , Água/análise , Wyoming
12.
New Phytol ; 204(4): 924-31, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25130263

RESUMO

Climate change scenarios forecast increased aridity in large areas worldwide with potentially important effects on nutrient availability and plant growth. Plant nitrogen and phosphorus concentrations (plant [N] and [P]) have been used to assess nutrient limitation, but a comprehensive understanding of drought stress on plant [N] and [P] remains elusive. We conducted a meta-analysis to examine responses of plant [N] and [P] to drought manipulation treatments and duration of drought stress. Drought stress showed negative effects on plant [N] (-3.73%) and plant [P] (-9.18%), and a positive effect on plant N:P (+ 6.98%). Drought stress had stronger negative effects on plant [N] and [P] in the short term (< 90 d) than in the long term (> 90 d). Drought treatments that included drying-rewetting cycles showed no effect on plant [N] and [P], while constant, prolonged, or intermittent drought stress had a negative effect on plant [P]. Our results suggest that negative effects on plant [N] and [P] are alleviated with extended duration of drought treatments and with drying-rewetting cycles. Availability of water, rather than of N and P, may be the main driver for reduced plant growth with increased long-term drought stress.


Assuntos
Secas , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Solo/química , Estresse Fisiológico
13.
Oecologia ; 175(2): 699-711, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24643718

RESUMO

Future ecosystem properties of grasslands will be driven largely by belowground biomass responses to climate change, which are challenging to understand due to experimental and technical constraints. We used a multi-faceted approach to explore single and combined impacts of elevated CO2 and warming on root carbon (C) and nitrogen (N) dynamics in a temperate, semiarid, native grassland at the Prairie Heating and CO2 Enrichment experiment. To investigate the indirect, moisture mediated effects of elevated CO2, we included an irrigation treatment. We assessed root standing mass, morphology, residence time and seasonal appearance/disappearance of community-aggregated roots, as well as mass and N losses during decomposition of two dominant grass species (a C3 and a C4). In contrast to what is common in mesic grasslands, greater root standing mass under elevated CO2 resulted from increased production, unmatched by disappearance. Elevated CO2 plus warming produced roots that were longer, thinner and had greater surface area, which, together with greater standing biomass, could potentially alter root function and dynamics. Decomposition increased under environmental conditions generated by elevated CO2, but not those generated by warming, likely due to soil desiccation with warming. Elevated CO2, particularly under warming, slowed N release from C4-but not C3-roots, and consequently could indirectly affect N availability through treatment effects on species composition. Elevated CO2 and warming effects on root morphology and decomposition could offset increased C inputs from greater root biomass, thereby limiting future net C accrual in this semiarid grassland.


Assuntos
Dióxido de Carbono , Mudança Climática , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/fisiologia , Biomassa , Carbono , Ecossistema , Nitrogênio , Solo
14.
Trends Plant Sci ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38825557

RESUMO

Root nitrogen (N) reallocation involves remobilization of root N-storage pools to support shoot growth. Representing a critical yet underexplored facet of plant function, we developed innovative frameworks to elucidate its connections with key ecosystem components. First, root N reallocation increases with plant species richness and N-acquisition strategies, driven by competitive stimulation of plant N demand and synergies in N uptake. Second, competitive root traits and mycorrhizal symbioses, which enhance N foraging and uptake, exhibit trade-offs with root N reallocation. Furthermore, root N reallocation is attenuated by N-supply attributes such as increasing litter quality, soil fungi-to-bacteria ratios, and microbial recruitment in the hyphosphere/rhizosphere. These frameworks provide new insights and research avenues for understanding the ecological roles of root N reallocation.

15.
New Phytol ; 196(3): 807-815, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23005343

RESUMO

Nitrogen (N) and phosphorus (P) are essential nutrients for primary producers and decomposers in terrestrial ecosystems. Although climate change affects terrestrial N cycling with important feedbacks to plant productivity and carbon sequestration, the impacts of climate change on the relative availability of N with respect to P remain highly uncertain. In a semiarid grassland in Wyoming, USA, we studied the effects of atmospheric CO(2) enrichment (to 600 ppmv) and warming (1.5/3.0°C above ambient temperature during the day/night) on plant, microbial and available soil pools of N and P. Elevated CO(2) increased P availability to plants and microbes relative to that of N, whereas warming reduced P availability relative to N. Across years and treatments, plant N : P ratios varied between 5 and 18 and were inversely related to soil moisture. Our results indicate that soil moisture is important in controlling P supply from inorganic sources, causing reduced P relative to N availability during dry periods. Both wetter soil conditions under elevated CO(2) and drier conditions with warming can further alter N : P. Although warming may alleviate N constraints under elevated CO(2) , warming and drought can exacerbate P constraints on plant growth and microbial activity in this semiarid grassland.


Assuntos
Mudança Climática , Nitrogênio/metabolismo , Fósforo/metabolismo , Poaceae/metabolismo , Microbiologia do Solo , Solo/análise , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Temperatura Alta , Compostos de Amônio Quaternário/metabolismo , Água/metabolismo , Wyoming
16.
Glob Chang Biol ; 18(9): 2681-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501048

RESUMO

In recent years, increased awareness of the potential interactions between rising atmospheric CO2 concentrations ([ CO2 ]) and temperature has illustrated the importance of multifactorial ecosystem manipulation experiments for validating Earth System models. To address the urgent need for increased understanding of responses in multifactorial experiments, this article synthesizes how ecosystem productivity and soil processes respond to combined warming and [ CO2 ] manipulation, and compares it with those obtained in single factor [ CO2 ] and temperature manipulation experiments. Across all combined elevated [ CO2 ] and warming experiments, biomass production and soil respiration were typically enhanced. Responses to the combined treatment were more similar to those in the [ CO2 ]-only treatment than to those in the warming-only treatment. In contrast to warming-only experiments, both the combined and the [ CO2 ]-only treatments elicited larger stimulation of fine root biomass than of aboveground biomass, consistently stimulated soil respiration, and decreased foliar nitrogen (N) concentration. Nonetheless, mineral N availability declined less in the combined treatment than in the [ CO2 ]-only treatment, possibly due to the warming-induced acceleration of decomposition, implying that progressive nitrogen limitation (PNL) may not occur as commonly as anticipated from single factor [ CO2 ] treatment studies. Responses of total plant biomass, especially of aboveground biomass, revealed antagonistic interactions between elevated [ CO2 ] and warming, i.e. the response to the combined treatment was usually less-than-additive. This implies that productivity projections might be overestimated when models are parameterized based on single factor responses. Our results highlight the need for more (and especially more long-term) multifactor manipulation experiments. Because single factor CO2 responses often dominated over warming responses in the combined treatments, our results also suggest that projected responses to future global warming in Earth System models should not be parameterized using single factor warming experiments.

17.
Oecologia ; 170(3): 799-808, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22555358

RESUMO

Precipitation pulses in arid ecosystems can lead to temporal asynchrony in microbial and plant processing of nitrogen (N) during drying/wetting cycles causing increased N loss. In contrast, more consistent availability of soil moisture in mesic ecosystems can synchronize microbial and plant processes during the growing season, thus minimizing N loss. We tested whether microbial N cycling is asynchronous with plant N uptake in a semiarid grassland. Using (15)N tracers, we compared rates of N cycling by microbes and N uptake by plants after water pulses of 1 and 2 cm to rates in control plots without a water pulse. Microbial N immobilization, gross N mineralization, and nitrification dramatically increased 1-3 days after the water pulses, with greatest responses after the 2-cm pulse. In contrast, plant N uptake increased more after the 1-cm than after the 2-cm pulse. Both microbial and plant responses reverted to control levels within 10 days, indicating that both microbial and plant responses were short lived. Thus, microbial and plant processes were temporally synchronous following a water pulse in this semiarid grassland, but the magnitude of the pulse substantially influenced whether plants or microbes were more effective in acquiring N. Furthermore, N loss increased after both small and large water pulses (as shown by a decrease in total (15)N recovery), indicating that changes in precipitation event sizes with future climate change could exacerbate N losses from semiarid ecosystems.


Assuntos
Ecossistema , Ciclo do Nitrogênio , Poaceae/fisiologia , Microbiologia do Solo , Água , Análise de Variância , Biomassa , Colorado , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo
18.
Environ Pollut ; 310: 119892, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932895

RESUMO

The interactions of plastics and soil organisms are complex and inconsistent observations on the effects of plastics on soil organisms have been made in published studies. In this study, we assessed the effects of plastic exposure on plants, fauna and microbial communities, with a meta-analysis. Using a total of 2936 observations from 140 publications, we analysed how responses in plants, soil fauna and microorganisms depended on the plastic concentration, size, type, species and exposure media. We found that overall plastics caused substantial detrimental effects to plants and fauna, but less so to microbial diversity and richness. Plastic concentration was one of the most important factors explaining variations in plant and faunal responses. Larger plastics (>1 µm) caused unfavourable changes to plant growth, germination and oxidative stress, while nanoplastics (NPs; ≤ 1 µm) only increased oxidative stress. On the contrary, there was a clear trend showing that small plastics adversely affected fauna reproduction, survival and locomotion than large plastics. Plant responses were indifferent to plastic type, with most studies conducted using polyethylene (PE) and polystyrene (PS) plastics, but soil fauna were frequently more sensitive to PS than to PE exposure. Plant species played a vital role in some parameters, with the effects of plastics being considerably greater on vegetable plants than on cereal plants.


Assuntos
Plásticos , Solo , Ecotoxicologia , Plantas , Poliestirenos
19.
Front Plant Sci ; 13: 927435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812934

RESUMO

Photosynthetically derived carbon (C) is allocated belowground, allowing plants to obtain nutrients. However, less is known about the amount of nutrients acquired relative to the C allocated belowground, which is referred to as C efficiency for nutrient acquisition (CENA). Here, we examined how C efficiency for nitrogen (N) and phosphorus (P) acquisition varied between ryegrass (Lolium perenne) and clover (Trifolium repens) with and without P fertilization. A continuous 13C-labeling method was applied to track belowground C allocation. Both species allocated nearly half of belowground C to rhizosphere respiration (49%), followed by root biomass (37%), and rhizodeposition (14%). With regard to N and P, CENA was higher for clover than for ryegrass, which remained higher after accounting for relatively low C costs associated with biological N2 fixation. Phosphorus fertilization increased the C efficiency for P acquisition but decreased the C efficiency for N acquisition. A higher CENA for N and P in clover may be attributed to the greater rhizosphere priming on soil organic matter decomposition. Increased P availability with P fertilization could induce lower C allocation for P uptake but exacerbate soil N limitation, thereby making N uptake less C efficient. Overall, our study revealed that species-specific belowground C allocation and nutrient uptake efficiency depend on which nutrient is limited.

20.
Sci Total Environ ; 846: 157430, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863579

RESUMO

Grassland plants allocate photosynthetically fixed carbon (C) belowground to root biomass and rhizodeposition, but also to support arbuscular mycorrhizal fungi (AMF). These C allocation pathways could increase nutrient scavenging, but also mining of nutrients through enhanced organic matter decomposition. While important for grassland ecosystem functioning, methodological constraints have limited our ability to measure these processes under field conditions. We used 13CO2 and 15N pulse labelling methods to examine belowground C allocation to root biomass production, rhizodeposition and AMF colonisation during peak plant growth in a grassland field experiment after three years of N fertilisation (0 and 40 kg N ha-1 year-1) and defoliation frequency treatments ("low" and "high", with 3-4 and 6-8 simulated grazing events per year, mimicking moderate and intense grazing, respectively). Moreover, we quantified the consequences for plant nitrogen (N) uptake and decomposition of soil organic C (SOC). Nitrogen fertilisation increased rhizodeposition and AMF colonisation (by 63 % and 54 %), but reduced root biomass (by 25 %). With high defoliation frequency, AMF colonisation increased (by 60 %), but both root biomass and rhizodeposition declined (by 35 % and 58 %). Plant N uptake was highest without N fertilisation and low defoliation frequency, and positively related to root biomass and the number of root tips. Therefore, when N supply is low and the capacity to produce C through photosynthesis is high, belowground C allocation to root production and associated root tips was important to scavenge for N in the soil. In contrast, the strong positive relationship between the rate of rhizodeposition and SOC decomposition, suggests that rhizodeposition may help plants to mine for nutrients locked in SOC. Taken together, the results of this study suggest that belowground C allocation pathways affected by N fertilisation and defoliation frequency affect plant N scavenging and mining with important consequences for long-term grassland C dynamics.


Assuntos
Micorrizas , Solo , Biomassa , Carbono/metabolismo , Ecossistema , Micorrizas/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA