Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 17(11): 1609-1623, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27596623

RESUMO

The CHD1 gene, encoding the chromo-domain helicase DNA-binding protein-1, is one of the most frequently deleted genes in prostate cancer. Here, we examined the role of CHD1 in DNA double-strand break (DSB) repair in prostate cancer cells. We show that CHD1 is required for the recruitment of CtIP to chromatin and subsequent end resection during DNA DSB repair. Our data support a role for CHD1 in opening the chromatin around the DSB to facilitate the recruitment of homologous recombination (HR) proteins. Consequently, depletion of CHD1 specifically affects HR-mediated DNA repair but not non-homologous end joining. Together, we provide evidence for a previously unknown role of CHD1 in DNA DSB repair via HR and show that CHD1 depletion sensitizes cells to PARP inhibitors, which has potential therapeutic relevance. Our findings suggest that CHD1 deletion, like BRCA1/2 mutation in ovarian cancer, may serve as a marker for prostate cancer patient stratification and the utilization of targeted therapies such as PARP inhibitors, which specifically target tumors with HR defects.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Biomarcadores , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Cromatina , Quebras de DNA de Cadeia Dupla , DNA Helicases/deficiência , DNA Helicases/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases , Humanos , Masculino , Proteínas Nucleares/genética , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Próstata/genética , Reparo de DNA por Recombinação
2.
Strahlenther Onkol ; 191(1): 59-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25156511

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to determine the impact of functional single nucleotide polymorphism (SNP) pathways involved in the ROS pathway, DNA repair, or TGFB1 signaling on acute or late normal toxicity as well as individual radiosensitivity. MATERIALS AND METHODS: Patients receiving breast-conserving surgery and radiotherapy were examined either for erythema (n = 83), fibrosis (n = 123), or individual radiosensitivity (n = 123). The 17 SNPs analyzed are involved in the ROS pathway (GSTP1, SOD2, NQO1, NOS3, XDH), DNA repair (XRCC1, XRCC3, XRCC6, ERCC2, LIG4, ATM) or TGFB signaling (SKIL, EP300, APC, AXIN1, TGFB1). Associations with biological and clinical endpoints were studied for single SNPs but especially for combinations of SNPs assuming that a SNP is either beneficial or deleterious and needs to be weighted. RESULTS: With one exception, no significant association was seen between a single SNP and the three endpoints studied. No significant associations were also observed when applying a multi-SNP model assuming that each SNP was deleterious. In contrast, significant associations were obtained when SNPs were suggested to be either beneficial or deleterious. These associations increased, when each SNP was weighted individually. Detailed analysis revealed that both erythema and individual radiosensitivity especially depend on SNPs affecting DNA repair and TGFB1 signaling, while SNPs in ROS pathway were of minor importance. CONCLUSION: Functional pathways of SNPs may be used to form a risk score allowing to predict acute and late radiation-induced toxicity but also to unravel the underlying biological mechanisms.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/radioterapia , Reparo do DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Lesões por Radiação/genética , Tolerância a Radiação/genética , Adulto , Idoso , Neoplasias da Mama/epidemiologia , Feminino , Marcadores Genéticos/genética , Predisposição Genética para Doença/epidemiologia , Predisposição Genética para Doença/genética , Alemanha/epidemiologia , Humanos , Incidência , Desequilíbrio de Ligação/genética , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Lesões por Radiação/epidemiologia , Estudos Retrospectivos , Medição de Risco/métodos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/genética
4.
Nucleic Acids Res ; 40(17): 8336-47, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22730303

RESUMO

Double-strand breaks (DSBs) are repaired by two distinct pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). The endonuclease Artemis and the PIK kinase Ataxia-Telangiectasia Mutated (ATM), mutated in prominent human radiosensitivity syndromes, are essential for repairing a subset of DSBs via NHEJ in G1 and HR in G2. Both proteins have been implicated in DNA end resection, a mandatory step preceding homology search and strand pairing in HR. Here, we show that during S-phase Artemis but not ATM is dispensable for HR of radiation-induced DSBs. In replicating AT cells, numerous Rad51 foci form gradually, indicating a Rad51 recruitment process that is independent of ATM-mediated end resection. Those DSBs decorated with Rad51 persisted through S- and G2-phase indicating incomplete HR resulting in unrepaired DSBs and a pronounced G2 arrest. We demonstrate that in AT cells loading of Rad51 depends on functional ATR/Chk1. The ATR-dependent checkpoint response is most likely activated when the replication fork encounters radiation-induced single-strand breaks leading to generation of long stretches of single-stranded DNA. Together, these results provide new insight into the role of ATM for initiation and completion of HR during S- and G2-phase. The DSB repair defect during S-phase significantly contributes to the radiosensitivity of AT cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Reparo de DNA por Recombinação , Fase S/genética , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular , Endonucleases , Humanos , Rad51 Recombinase/análise , Tolerância a Radiação , Fase S/efeitos da radiação
5.
Int J Cancer ; 132(9): 2118-26, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23065657

RESUMO

RAD51 is the central protein in the homologous recombination pathway and is therefore of great relevance in terms of both therapy resistance as well as genomic stability. By using a tissue microarray analysis of 1,213 biopsies taken from colorectal adenocarcinomas (CRCs), we investigated whether RAD51 expression can be used as a prognostic marker as well as potential associations between this and the expression of other proteins known to be related to CRC. Strong RAD51 expression was observed in 1% of CRC, moderate in 11%, weak in 34% and no expression in 44%. No correlation was found between RAD51 expression and clinicopathological parameters. RAD51 expression correlated significantly (p = 0.001) with overall survival, with a median survival of 11 months for patients with strong, 46 with moderate, 76 with weak and 68 with negative expression. Multivariate analyses revealed that in addition to tumor stage (p < 0.0001) and nodal status (p < 0.0001), RAD51 expression is also an independent prognostic parameter (p = 0.011). Strong RAD51 expression was found to be associated with the loss of the two DNA mismatch repair proteins MSH (p = 0.0003), MLH (p = 0.002) and ß-catenin (p = 0.012) as well as with elevated p21 (p = 0.003) and EGFR expression (p = 0.0001). However, a correlation with overall survival could only be found for EGFR expression (p = 0.008), although no added benefit in risk stratification could be determined when evaluated together with RAD51. Overexpression of RAD51 is a predictor of poor outcome in CRC. This finding indicated the promise of future studies using RAD51 as a prognostic marker and therapeutic target.


Assuntos
Adenocarcinoma/mortalidade , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/mortalidade , Rad51 Recombinase/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/radioterapia , Idoso , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/radioterapia , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos , Taxa de Sobrevida , Análise Serial de Tecidos
6.
Mod Pathol ; 26(7): 975-83, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23370768

RESUMO

6q12-22 is the second most commonly deleted genomic region in prostate cancer. Mapping studies have described a minimally deleted area at 6q15, containing MAP3K7/TAK1, which was recently shown to have tumor suppressive properties. To determine prevalence and clinical significance of MAP3K7 alterations in prostate cancer, a tissue microarray containing 4699 prostate cancer samples was analyzed by fluorescence in situ hybridization. Heterozygous MAP3K7 deletions were found in 18.48% of 2289 interpretable prostate cancers. MAP3K7 deletions were significantly associated with advanced tumor stage (P<0.0001), high Gleason grade (P<0.0001), lymph node metastasis (P<0.0108) and early biochemical recurrence (P<0.0001). MAP3K7 alterations were typically limited to the loss of one allele as homozygous deletions were virtually absent and sequencing analyses revealed no evidence for MAP3K7 mutations in 15 deleted and in 14 non-deleted cancers. There was a striking inverse association of MAP3K7 deletions and TMPRSS2:ERG fusion status with 26.7% 6q deletions in 1125 ERG-negative and 11.1% 6q deletions in 1198 ERG-positive cancers (P<0.0001). However, the strong prognostic role of 6q deletions was retained in both ERG-positive and ERG-negative cancers (P<0.0001 each). In summary, our study identifies MAP3K7 deletion as a prominent feature in ERG-negative prostate cancer with strong association to tumor aggressiveness. MAP3K7 alterations are typically limited to one allele of the gene. Together with the demonstrated tumor suppressive function in cell line experiments and lacking evidence for inactivation through hypermethylation, these results indicate MAP3K7 as a gene for which haploinsufficency is substantially tumorigenic.


Assuntos
MAP Quinase Quinase Quinases/genética , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Western Blotting , Cromossomos Humanos Par 6 , Deleção de Genes , Humanos , Hibridização in Situ Fluorescente , MAP Quinase Quinase Quinases/sangue , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Proteínas de Fusão Oncogênica/genética , Reação em Cadeia da Polimerase , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , Análise Serial de Tecidos
7.
Radiat Environ Biophys ; 52(4): 463-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23884658

RESUMO

The aim of this study was to determine the effects of ionizing radiation on gene expression by using for a first time a qPCR platform specifically established for the detection of 94 DNA repair genes but also to test the robustness of these results by using three analytical methods (global pattern recognition, ΔΔCq/Normfinder and ΔΔCq/Genorm). Study was focused on these genes because DNA repair is known primarily to determine the radiation response. Six strains of normal human fibroblasts were exposed to 2 Gy, and changes in gene expression were analyzed 24 h thereafter. A significant change in gene expression was found for only few genes, but the genes detected were mostly different for the three analytical methods used. For GPR, a significant change was found for four genes, in contrast to the eight or nine genes when applying ΔΔCq/Genorm or ΔΔCq/Normfinder, respectively. When using all three methods, a significant change in expression was only seen for GADD45A and PCNA. These data demonstrate that (1) the genes identified to show an altered expression upon irradiation strongly depend on the analytical method applied, and that (2) overall GADD45A and PCNA appear to play a central role in this response, while no significant change is induced for any of the other DNA repair genes tested.


Assuntos
Reparo do DNA/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Transcriptoma/efeitos da radiação , Reparo do DNA/efeitos da radiação , Humanos , Reconhecimento Automatizado de Padrão , Padrões de Referência , Reprodutibilidade dos Testes
8.
Life (Basel) ; 13(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37374179

RESUMO

Radiotherapy and immunotherapy have shown promising efficacy for the treatment of solid malignancies. Here, we aim to clarify the potential of a combined application of radiotherapy and programmed cell death-ligand 1 (PD-L1) monoclonal antibody atezolizumab in primary anaplastic thyroid cancer (ATC) cells. The radiation caused a significant reduction in cell proliferation, measured by luminescence, and of the number of colonies. The addition of atezolizumab caused a further reduction in cell proliferation of the irradiated ATC cells. However, the combined treatment did not cause either the exposure of the phosphatidylserine or the necrosis, assessed by luminescence/fluorescence. Additionally, a reduction in both uncleaved and cleaved forms of caspases 8 and 3 proteins was detectable in radiated cells. The DNA damage evidenced the over-expression of TP53, CDKN1A and CDKN1B transcripts detected by RT-qPCR and the increase in the protein level of P-γH2AX and the DNA repair deputed kinases. PD-L1 protein level increased in ATC cells after radiation. Radiotherapy caused the reduction in cell viability and an increase of PD-L1-expression, but not apoptotic cell death in ATC cells. The further combination with the immunotherapeutic atezolizumab could increase the efficacy of radiotherapy in terms of reduction in cell proliferation. Further analysis of the involvement of alternative cell death mechanisms is necessary to clarify their cell demise mechanism of action. Their efficacy represents a promising therapy for patients affected by ATC.

9.
Front Oncol ; 12: 878675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530351

RESUMO

Background: Treatment of locally advanced HPV-negative head and neck squamous cell carcinoma (HNSCC) with photon radiation is the standard of care but shows only moderate success. Alterations in response toward DNA DSB repair, apoptosis, and senescence are underlying determinants of radioresistance in the tumor cells. Recently, senescence and the associated secretory phenotype (SASP) came into the focus of research and raised the need to identify the tumor-promoting molecular mechanisms of the SASP. The aim of this project was to unravel more of this process and to understand the impact of the IL1 pathway, which plays a major role in SASP. The studies were performed for photon and 12C-ion irradiation, which strongly vary in their effect on radioresistance. Materials and Methods: A panel of five HPV-negative HNSCC cell lines was treated with photon and 12C-ion irradiation and examined for clonogenic survival, DNA DSB repair, and senescence. SASP and IL1 gene expressions were determined by RNA sequencing and activation of the IL1 pathway by ELISA. A functional impact of IL1A and IL1B was examined by specific siRNA knockdown. Results: Cell killing and residual DSBs were higher after 12C-ion than after photon irradiation. 12C-ion induced more senescence with a significant correlation with cell survival. The impact on radioresistance appears to be less than after photon irradiation. The expression of SASP-related genes and the IL1 pathway are strongly induced by both types of irradiation and correlate with radioresistance and senescence, especially IL1A and IL1B which exhibit excellent associations. Surprisingly, knockdown of IL1A and IL1B revealed that the IL1 pathway is functionally not involved in radioresistance, DSB repair, or induction of senescence. Conclusions: IL1A and IL1B are excellent indicators of cellular radioresistance and senescence in HNSCC cells without functional involvement in these processes. Clearly more research is needed to understand the molecular mechanisms of senescence and SASP and its impact on radioresistance.

10.
Cancers (Basel) ; 14(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35804930

RESUMO

The standard of care for advanced head and neck cancers (HNSCCs) is radiochemotherapy, including cisplatin. This treatment results in a cure rate of approximately 85% for oropharyngeal HPV-positive HNSCCs, in contrast to only 50% for HPV-negative HNSCCs, and is accompanied by severe side effects for both entities. Therefore, innovative treatment modalities are required, resulting in a better outcome for HPV-negative HNSCCs, and lowering the adverse effects for both entities. The effect of the dual PI3K/mTOR inhibitor NVP-BEZ235 on a combined treatment with cisplatin and radiation was studied in six HPV-negative and six HPV-positive HNSCC cell lines. Cisplatin alone was slightly more effective in HPV-positive cells. This could be attributed to a defect in homologous recombination, as demonstrated by depleting RAD51. Solely for HPV-positive cells, pretreatment with BEZ235 resulted in enhanced cisplatin sensitivity. For the combination of cisplatin and radiation, additive effects were observed. However, when pretreated with BEZ235, this combination changed into a synergistic interaction, with a slightly stronger enhancement for HPV-positive cells. This increase could be attributed to a diminished degree of DSB repair in G1, as visualized via the detection of γH2AX/53BP1 foci. BEZ235 can be used to enhance the effect of combined treatment with cisplatin and radiation in both HPV-negative and -positive HNSCCs.

11.
DNA Repair (Amst) ; 8(3): 336-46, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19059500

RESUMO

Several types of DNA lesion are induced after ionizing irradiation (IR) of which double strand breaks (DSBs) are expected to be the most lethal, although single strand breaks (SSBs) and DNA base damages are quantitatively in the majority. Proteins of the base excision repair (BER) pathway repair these numerous lesions. DNA polymerase beta has been identified as a crucial enzyme in BER and SSB repair (SSBR). We showed previously that inhibition of BER/SSBR by expressing a dominant negative DNA polymerase beta (polbetaDN) resulted in radiosensitization. We hypothesized increased kill to result from DSBs arising from unrepaired SSBs and BER intermediates. We find here higher numbers of IR-induced chromosome aberrations in polbetaDN expressing cells, confirming increased DSB formation. These aberrations did not result from changes in DSB induction or repair of the majority of lesions. SSB conversion to DSBs has been shown to occur during replication. We observed an increased induction of chromatid aberrations in polbetaDN expressing cells after IR, suggesting such a replication-dependence of secondary DSB formation. We also observed a pronounced increase of chromosomal deletions, the most likely cause of the increased kill. After H(2)O(2) treatment, polbetaDN expression only resulted in increased chromatid (not chromosome) aberrations. Together with the lack of sensitization to H(2)O(2), these data further suggest that the additional secondarily induced lethal DSBs resulted from repair attempts at complex clustered damage sites, unique to IR. Surprisingly, the polbetaDN induced increase in residual gammaH2AX foci number was unexpectedly low compared with the radiosensitization or induction of aberrations. Our data thus demonstrate the formation of secondary DSBs that are reflected by increased kill but not by residual gammaH2AX foci, indicating an escape from gammaH2AX-mediated DSB repair. In addition, we show that in the polbetaDN expressing cells secondary DSBs arise in a radiation-specific and partly replication-dependent manner.


Assuntos
Morte Celular/efeitos da radiação , DNA Polimerase beta/fisiologia , Radiação Ionizante , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Cromátides/efeitos da radiação , DNA/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Simples/efeitos da radiação , Reparo do DNA/efeitos da radiação , Replicação do DNA , Relação Dose-Resposta à Radiação , Histonas , Humanos , Estresse Oxidativo/genética
12.
Front Oncol ; 10: 1480, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974177

RESUMO

Here, we present a modified in vitro end-joining (EJ) assay to quantify EJ capacity, accuracy as well as pathway switch to alternative end-joining (Alt-EJ) or single strand annealing (SSA). A novel transformation assay was established to specifically measure circular repair products, which correlate with classical EJ efficiency. The EJ assay was validated using EJ-deficient mammalian cell lines (Ku80, DNA-PKcs, LigIV, or XRCC4 mutants). A pathway switch to Alt-EJ and SSA was seen exclusively in Ku-deficient cells. Circular EJ product formation correlated with cell survival and DSB repair capacity after X-irradiation. Investigation of 14 HNSCC cell lines revealed differences in the total EJ capacity but a broader variation in the amount of circular repair products. Sequencing of repair junctions in HNSCC cells demonstrated a predominance of high-fidelity EJ and an avoidance of both Alt-EJ and SSA. A significant correlation was observed between the amount of circular repair products, repair of IR-induced DSB and radiosensitivity. Collectively, these data indicate that the presented in vitro-EJ-assay can not only estimate the repair capacity of cancer cells to enable the stratification into radiosensitive or radioresistant, but can also identify repair pathway deregulation such as a switch to Alt-EJ or SSA, which enables tumor targeting.

13.
Radiother Oncol ; 151: 134-140, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717362

RESUMO

BACKGROUND AND PURPOSE: HPV positive (pos.) HNSCC cells are significantly more radiosensitive to photon irradiation as compared to HPV negative (neg.) cells. Functionally, this is considered to result from a reduced DSB repair capacity. It was now tested, whether such a difference is also observed when using carbon ion (12C) irradiation. MATERIAL AND METHODS: Five HPV pos. and five HPV neg. HNSCC cell lines were irradiated with photons or 12C-ions using 2D or 3D cell culture conditions. Clonogenic survival was determined by colony formation assay and DSB repair by immunofluorescence using co-staining of γH2AX and 53BP1 foci. RESULTS: The pronounced difference in radiosensitivity known for these two entities when exposed to photons in 2D cell culture, was reduced when treated under 3D conditions. Irradiation with 12C-ions strongly enhanced cell killing, whereby increase was more pronounced for the HPV neg. when compared to the HPV pos. cell line (RBE = 2.81 vs. 2.14). As a consequence, after 12C-irradiation clonogenic survival was almost identical for the two entities as was demonstrated for all cell lines at a dose of 3 Gy. In line with this, the significant difference in DSB repair capacity between HPV pos. and neg. HNSCC cells, as seen after photon irradiation, was abrogated after 12C-irradiation. CONCLUSION: While HPV pos. cells are significantly more radiosensitive to photons than HPV neg. cells, no significant difference was seen after 12C-irradiation. This needs to be considered when planning new clinical protocols for the treatment of HPV neg. and pos. tumors with 12C-ions.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Carbono , Linhagem Celular Tumoral , Reparo do DNA , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Fótons , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço
14.
Cancers (Basel) ; 12(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085396

RESUMO

The PI3K/Akt/mTOR pathway is frequently altered in human papillomavirus (HPV)-positive and negative squamous cell carcinoma of the head and neck (HNSCC) and overstimulation is associated with poor prognosis. PI3K drives Akt activation and constitutive signaling acts pro-proliferative, supports cell survival, DNA repair, and contributes to radioresistance. Since the small molecule NVP-BEZ235 (BEZ235) is a potent dual inhibitor of this pathway, we were interested whether BEZ235 could be an efficient radiosensitizer. The 50 nM BEZ235 was found to abrogate endogenous and irradiation-induced phosphorylation of Akt (Ser473). The anti-proliferative capacity of the drug resulted in an increase in G1-phase cells. Repair of radiation-induced DNA double-strand breaks (DSBs) was strongly suppressed. Reduction in DSB repair was only apparent in G1- but not in G2-phase cells, suggesting that BEZ235 primarily affects non-homologous end joining. This finding was confirmed using a DSB repair reporter gene assay and could be attributed to an impaired phosphorylation of DNA-PKcs (S2056). Cellular radiosensitivity increased strongly after BEZ235 addition in all HNSCC cell lines used, especially when irradiated in the G0 or G1 phase. Our data indicate that targeting the PI3K/Akt/mTOR pathway by BEZ235 with concurrent radiotherapy may be considered an effective strategy for the treatment of HNSCC, regardless of the HPV and Akt status.

15.
Radiother Oncol ; 90(2): 265-72, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18804300

RESUMO

PURPOSE: Individual radiosensitivity as measured with in vitro irradiated lymphocytes using metaphase analysis can predict the risk of normal tissue effects after radiotherapy. This parameter is considered to be primarily determined by the cellular repair capacity of DNA double-strand breaks (DSBs). It is now tested to which extent this capacity also depends on homologous recombination (HR), which is a pathway available when cells are in S/G2 phase. METHODS: Experiments were performed with CHO K1 cells, in which HR was suppressed via knock-down of RAD51 using RNA interference (RNAi). RAD51 was measured via western and foci formation, cell survival by colony forming, DSBs by gammaH2AX foci formation, and chromosomal damage using PCC, G0 or G2 assay. RESULTS: In quiescent G1 cells DSB repair is completed 6h after irradiation. But there is still a substantial fraction of non-repaired DSBs. Most of these DSBs are repaired when G1 cells are stimulated into cell cycle. Suppression of HR by down-regulation of RAD51 did not affect this repair. In contrast, repair was inhibited when cells were irradiated in late S/G2. In line with these data down-regulation of HR did affect survival of cells irradiated in late S/G2, but not in G1. CONCLUSIONS: Individual radiosensitivity as measured for G0/1 cells using metaphase analysis does not depend on homologous recombination.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Tolerância a Radiação/genética , Recombinação Genética , Animais , Células CHO , Ciclo Celular/efeitos da radiação , Linhagem Celular , Aberrações Cromossômicas/efeitos da radiação , Cricetinae , Cricetulus , Reparo do DNA , Fase G2/efeitos da radiação , Histonas/metabolismo , Rad51 Recombinase/metabolismo
16.
Radiother Oncol ; 90(2): 257-64, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19038467

RESUMO

PURPOSE: Squamous cell carcinomas (SCCs) are characterized by moderate radiosensitivity. We have established the human head & neck SCC cell line SKX, which shows an exceptionally high radiosensitivity. It was the aim of this study to understand the underlying mechanisms. MATERIALS & METHODS: Experiments were performed with SKX and FaDu, the latter taken as a control of moderate radiosensitivity. Cell lines were grown as xenografts as well as cell cultures. For xenografts, radiosensitivity was determined via local tumour control assay, and for cell cultures using colony assay. For cell cultures, apoptosis was determined by Annexin V staining and G1-arrest by BrdU labelling. Double-strand breaks (DSBs) were detected by both constant-field gel electrophoresis (CFGE) and gammaH2AX-foci technique; DSB rejoining was also assessed by in vitro rejoining assay; chromosomal damage was determined by G01-assay. RESULTS: Compared to FaDu, SKX cells are extremely radiosensitive as found for both xenografts (TCD(50) for 10 fractions 46.0Gy [95% C.I.: 39; 54 Gy] vs. 18.9 Gy [95% C.I.: 13; 25Gy]) and cell cultures (D(0.01); 7.1 vs. 3.5Gy). Both cell lines showed neither radiation-induced apoptosis nor radiation-induced permanent G1-arrest. For DSBs, there was no difference in the induction but for repair with SKX cells showing a higher level of both, slowly repaired DSBs and residual DSBs. The in vitro DSB repair assay revealed that SKX cells are defective in nonhomologous endjoining (NHEJ), and that more than 40% of DSBs are rejoined by single-strand annealing (SSA). SKX cells also depicted a two-fold higher number of lethal chromosomal aberrations when compared to FaDu cells. CONCLUSIONS: The extreme radiosensitivity of the SCC SKX seen both in vivo and in vitro can be ascribed to a reduced DNA double-strand break repair, resulting from a defect in NHEJ. This defect might be due to preferred usage of other pathways, such as SSA, which prevents efficient endjoining.


Assuntos
Carcinoma de Células Escamosas/genética , Quebras de DNA de Cadeia Dupla , Tolerância a Radiação/genética , Animais , Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/radioterapia , Aberrações Cromossômicas/efeitos da radiação , Reparo do DNA/efeitos da radiação , Feminino , Fase G1/efeitos da radiação , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Dosagem Radioterapêutica , Células Tumorais Cultivadas/efeitos da radiação
17.
Transl Oncol ; 12(3): 417-425, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30554133

RESUMO

Human papillomavirus (HPV) associated squamous cell carcinomas of the head and neck region (HPV+ HNSCCs) harbor diverging biological features as compared to classical noxa-induced (HPV-) HNSCC. One striking difference between subtypes is that the tumor suppressor gene TP53 is usually not mutated in HPV+ HNSCCs. However, p53 is inhibited by viral oncoprotein E6, leading to premature proteasomal degradation. We asked whether bortezomib (BZM), a clinically approved inhibitor of the proteasome, can functionally restore p53 and investigated in how far this will result in an enhanced radio- or chemosensitivity of HPV+ HNSCC cell lines. For all four HPV+ cell lines tested, BZM led to functional restoration of p53 and transactivation of downstream protein p21. In HPV+ cells, BZM also restored the radiation-induced p53/p21 transactivation. Consistently, in HPV+ cells, a restored G1 arrest as well as enhanced apoptosis were seen when BZM was given prior to irradiation (IR) or cisplatin (CDDP). BZM alone reduced the clonogenic survival of both HPV- and HPV+ cells. However, if BZM was combined with IR or CDDP, BZM did not significantly enhance radio- or chemosensitivity of HPV+ or HPV- HNSCC cell lines.

18.
Head Neck ; 41(11): 3869-3879, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31441163

RESUMO

BACKGROUND: It was tested whether the difference in carcinogenesis between noxa and human papillomavirus (HPV)-driven head and neck squamous cell carcinoma (HNSCC) is associated with a variation in genomic instability. METHODS: Conventional and molecular cytogenetics in HPV-positive and HPV-negative HNSCC cell lines. RESULTS: Numerical aneuploidy determined by multicolor fluorescence in situ hybridization and DNA ploidy was very similar for both entities with most chromosomes being present either in quadruplicate or triplicate, and only few are still diploid with, however, a striking similarity in the overall pattern. A clear difference was seen concerning the translocations formed, with no difference in the total amount but with a significantly higher genomic instability of HPV-positive cell lines at chromosome 3 as compared to HPV-negative cells. CONCLUSION: The different processes of carcinogenesis of HPV-positive and HPV-negative HNSCC appear to result in a similar pattern of numerical but a clear difference in structural chromosomal aberrations.


Assuntos
Aberrações Cromossômicas , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/virologia , Infecções por Papillomavirus/complicações , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
19.
DNA Repair (Amst) ; 6(6): 877-82, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17600911

RESUMO

A comprehensive meeting on current aspects of DNA repair organized by, Jochen Dahm-Daphi, Ekkehard Dikomey, Alexander Bürkle, Marlis Frankenberg-Schwager, Frank Grosse, Andrea Hartwig, George Iliakis, Bernd Kaina, Jürgen Thomale, and Lisa Wiesmüller was held in Hamburg, Germany from 12 to 15 September 2006. This article summarizes information of invited lectures and proferred papers of six plenary sessions.


Assuntos
Reparo do DNA , Neoplasias/patologia , Animais , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Humanos , Neoplasias/tratamento farmacológico , Recombinação Genética
20.
DNA Repair (Amst) ; 6(1): 140-4, 2007 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17283493

RESUMO

A comprehensive meeting on current aspects of DNA repair organized by, Jochen Dahm-Daphi, Ekkehard Dikomey, Alexander B_rkle, Marlis Frankenberg-Schwager, Frank Grosse, Andrea Hartwig, George Iliakis, Bernd Kaina, J_rgen Thomale, and Lisa Wiesm_ller was held in Hamburg, Germany from September 12 to 15, 2006. This article summarizes information of invited lectures and proferred papers of six plenary sessions.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Proteínas de Ciclo Celular/metabolismo , Humanos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA