Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genes Dev ; 24(3): 312-26, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20123909

RESUMO

In embryonic stem (ES) cells, a well-characterized transcriptional network promotes pluripotency and represses gene expression required for differentiation. In comparison, the transcriptional networks that promote differentiation of ES cells and the blastocyst inner cell mass are poorly understood. Here, we show that Sox17 is a transcriptional regulator of differentiation in these pluripotent cells. ES cells deficient in Sox17 fail to differentiate into extraembryonic cell types and maintain expression of pluripotency-associated transcription factors, including Oct4, Nanog, and Sox2. In contrast, forced expression of Sox17 down-regulates ES cell-associated gene expression and directly activates genes functioning in differentiation toward an extraembryonic endoderm cell fate. We show these effects of Sox17 on ES cell gene expression are mediated at least in part through a competition between Sox17 and Nanog for common DNA-binding sites. By elaborating the function of Sox17, our results provide insight into how the transcriptional network promoting ES cell self-renewal is interrupted, allowing cellular differentiation.


Assuntos
Diferenciação Celular , Linhagem da Célula/genética , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/metabolismo , Fatores de Transcrição SOXF/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Proteínas HMGB/genética , Camundongos , Fatores de Transcrição SOXF/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Genes Dev ; 23(5): 561-74, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19270157

RESUMO

Neural stem cells (NSCs) persist throughout life in two forebrain areas: the subventricular zone (SVZ) and the hippocampus. Why forebrain NSCs self-renew more extensively than those from other regions remains unclear. Prior studies have shown that the polycomb factor Bmi-1 is necessary for NSC self-renewal and that it represses the cell cycle inhibitors p16, p19, and p21. Here we show that overexpression of Bmi-1 enhances self-renewal of forebrain NSCs significantly more than those derived from spinal cord, demonstrating a regional difference in responsiveness. We show that forebrain NSCs require the forebrain-specific transcription factor Foxg1 for Bmi-1-dependent self-renewal, and that repression of p21 is a focus of this interaction. Bmi-1 enhancement of NSC self-renewal is significantly greater with increasing age and passage. Importantly, when Bmi-1 is overexpressed in cultured adult forebrain NSCs, they expand dramatically and continue to make neurons even after multiple passages, when control NSCs have become restricted to glial differentiation. Together these findings demonstrate the importance of Bmi-1 and Foxg1 cooperation to maintenance of NSC multipotency and self-renewal, and establish a useful method for generating abundant forebrain neurons ex vivo, outside the neurogenic niche.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Feminino , Expressão Gênica , Camundongos , Complexo Repressor Polycomb 1 , Gravidez , Prosencéfalo/embriologia , Células-Tronco/metabolismo
3.
Nat Neurosci ; 9(6): 743-51, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16680166

RESUMO

In the developing cerebral cortex, neurons are born on a predictable schedule. Here we show in mice that the essential timing mechanism is programmed within individual progenitor cells, and its expression depends solely on cell-intrinsic and environmental factors generated within the clonal lineage. Multipotent progenitor cells undergo repeated asymmetric divisions, sequentially generating neurons in their normal in vivo order: first preplate cells, including Cajal-Retzius neurons, then deep and finally superficial cortical plate neurons. As each cortical layer arises, stem cells and neuroblasts become restricted from generating earlier-born neuron types. Growth as neurospheres or in co-culture with younger cells did not restore their plasticity. Using short-hairpin RNA (shRNA) to reduce Foxg1 expression reset the timing of mid- but not late-gestation progenitors, allowing them to remake preplate neurons and then cortical-plate neurons. Our data demonstrate that neural stem cells change neuropotency during development and have a window of plasticity when restrictions can be reversed.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Proliferação de Células , Córtex Cerebral/embriologia , Neurônios/metabolismo , Células-Tronco/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Divisão Celular/genética , Movimento Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Regulação para Baixo/genética , Proteínas da Matriz Extracelular/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Microscopia de Vídeo , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Neurônios/citologia , Interferência de RNA/fisiologia , Proteína Reelina , Serina Endopeptidases/genética , Células-Tronco/citologia , Fatores de Tempo
5.
Exp Neurol ; 263: 190-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25448007

RESUMO

OBJECTIVE: Charcot-Marie-Tooth (CMT) disease is a group of inherited peripheral neuropathies associated with mutations or copy number variations in over 70 genes encoding proteins with fundamental roles in the development and function of Schwann cells and peripheral axons. Here, we used iPSC-derived cells to identify common pathophysiological mechanisms in axonal CMT. METHODS: iPSC lines from patients with two distinct forms of axonal CMT (CMT2A and CMT2E) were differentiated into spinal cord motor neurons and used to study axonal structure and function and electrophysiological properties in vitro. RESULTS: iPSC-derived motor neurons exhibited gene and protein expression, ultrastructural and electrophysiological features of mature primary spinal cord motor neurons. Cytoskeletal abnormalities were found in neurons from a CMT2E (NEFL) patient and corroborated by a mouse model of the same NEFL point mutation. Abnormalities in mitochondrial trafficking were found in neurons derived from this patient, but were only mildly present in neurons from a CMT2A (MFN2) patient. Novel electrophysiological abnormalities, including reduced action potential threshold and abnormal channel current properties were observed in motor neurons derived from both of these patients. INTERPRETATION: Human iPSC-derived motor neurons from axonal CMT patients replicated key pathophysiological features observed in other models of MFN2 and NEFL mutations, including abnormal cytoskeletal and mitochondrial dynamics. Electrophysiological abnormalities found in axonal CMT iPSC-derived human motor neurons suggest that these cells are hyperexcitable and have altered sodium and calcium channel kinetics. These findings may provide a new therapeutic target for this group of heterogeneous inherited neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Neurônios Motores/patologia , Adulto , Animais , Separação Celular , Doença de Charcot-Marie-Tooth/patologia , Criança , Fenômenos Eletrofisiológicos , Feminino , GTP Fosfo-Hidrolases/genética , Técnicas de Introdução de Genes , Humanos , Células-Tronco Pluripotentes Induzidas , Filamentos Intermediários/patologia , Masculino , Camundongos , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas de Neurofilamentos/genética , Técnicas de Patch-Clamp , Fenótipo , Mutação Puntual , Reação em Cadeia da Polimerase em Tempo Real
6.
Cell Stem Cell ; 10(5): 610-9, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22560081

RESUMO

A major obstacle in the application of cell-based therapies for the treatment of neuromuscular disorders is obtaining the appropriate number of stem/progenitor cells to produce effective engraftment. The use of embryonic stem (ES) or induced pluripotent stem (iPS) cells could overcome this hurdle. However, to date, derivation of engraftable skeletal muscle precursors that can restore muscle function from human pluripotent cells has not been achieved. Here we applied conditional expression of PAX7 in human ES/iPS cells to successfully derive large quantities of myogenic precursors, which, upon transplantation into dystrophic muscle, are able to engraft efficiently, producing abundant human-derived DYSTROPHIN-positive myofibers that exhibit superior strength. Importantly, transplanted cells also seed the muscle satellite cell compartment, and engraftment is present over 11 months posttransplant. This study provides the proof of principle for the derivation of functional skeletal myogenic progenitors from human ES/iPS cells and highlights their potential for future therapeutic application in muscular dystrophies.


Assuntos
Distrofina/metabolismo , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Distrofias Musculares/terapia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Proliferação de Células , Estudos de Viabilidade , Humanos , Camundongos , Camundongos Endogâmicos mdx , Contração Muscular , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Transplante de Células-Tronco , Transplante Heterólogo
7.
Stem Cell Res Ther ; 2(5): 37, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21936964

RESUMO

Five years after their initial derivation from mouse somatic cells, induced pluripotent stem (iPS) cells are an important tool for the study of neurological diseases. By offering an unlimited source of patient-specific disease-relevant neuronal and glial cells, iPS cell-based disease models hold enormous promise for identification of disease mechanisms, discovery of molecular targets and development of phenotypic screens for drug discovery. The present review focuses on the recent advancements in modeling neurological disorders, including the demonstration of disease-specific phenotypes in iPS cell-derived neurons generated from patients with spinal muscular atrophy, familial dysautonomia, Rett syndrome, schizophrenia and Parkinson disease. The ability of this approach to detect treatment effects from known therapeutic compounds has also been demonstrated, providing proof of principle for the use of iPS cell-derived cells in drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças do Sistema Nervoso/terapia , Diferenciação Celular , Linhagem da Célula , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo
8.
Nat Biotechnol ; 29(3): 279-86, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21293464

RESUMO

Human induced pluripotent stem cells (iPSCs) present exciting opportunities for studying development and for in vitro disease modeling. However, reported variability in the behavior of iPSCs has called their utility into question. We established a test set of 16 iPSC lines from seven individuals of varying age, sex and health status, and extensively characterized the lines with respect to pluripotency and the ability to terminally differentiate. Under standardized procedures in two independent laboratories, 13 of the iPSC lines gave rise to functional motor neurons with a range of efficiencies similar to that of human embryonic stem cells (ESCs). Although three iPSC lines were resistant to neural differentiation, early neuralization rescued their performance. Therefore, all 16 iPSC lines passed a stringent test of differentiation capacity despite variations in karyotype and in the expression of early pluripotency markers and transgenes. This iPSC and ESC test set is a robust resource for those interested in the basic biology of stem cells and their applications.


Assuntos
Técnicas de Cultura de Células/métodos , Fibroblastos/citologia , Células-Tronco Pluripotentes/citologia , Pele/citologia , Engenharia Tecidual/métodos , Diferenciação Celular , Células Cultivadas , Humanos
9.
Science ; 321(5893): 1218-21, 2008 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-18669821

RESUMO

The generation of pluripotent stem cells from an individual patient would enable the large-scale production of the cell types affected by that patient's disease. These cells could in turn be used for disease modeling, drug discovery, and eventually autologous cell replacement therapies. Although recent studies have demonstrated the reprogramming of human fibroblasts to a pluripotent state, it remains unclear whether these induced pluripotent stem (iPS) cells can be produced directly from elderly patients with chronic disease. We have generated iPS cells from an 82-year-old woman diagnosed with a familial form of amyotrophic lateral sclerosis (ALS). These patient-specific iPS cells possess properties of embryonic stem cells and were successfully directed to differentiate into motor neurons, the cell type destroyed in ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Diferenciação Celular , Reprogramação Celular , Fibroblastos/citologia , Neurônios Motores/citologia , Células-Tronco Pluripotentes/citologia , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Linhagem Celular , Células-Tronco Embrionárias/citologia , Feminino , Expressão Gênica , Humanos , Neurônios Motores/metabolismo , Neuroglia/citologia , Retroviridae/genética , Medula Espinal/citologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética
10.
Cell Stem Cell ; 1(1): 87-99, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-18371338

RESUMO

Knockout studies have shown that the polycomb gene Bmi-1 is important for postnatal, but not embryonic, neural stem cell (NSC) self-renewal and have identified the cell-cycle inhibitors p16/p19 as molecular targets. Here, using lentiviral-delivered shRNAs in vitro and in vivo, we determined that Bmi-1 is also important for NSC self-renewal in the embryo. We found that neural progenitors depend increasingly on Bmi-1 for proliferation as development proceeds from embryonic through adult stages. Acute shRNA-mediated Bmi-1 reduction causes defects in embryonic and adult NSC proliferation and self-renewal that, unexpectedly, are mediated by a different cell-cycle inhibitor, p21. Gene array analyses revealed developmental differences in Bmi-1-controlled expression of genes in the p21-Rb cell cycle regulatory pathway. Our data therefore implicate p21 as an important Bmi-1 target in NSCs, potentially with stage-related differences. Understanding stage-related mechanisms underlying NSC self-renewal has important implications for development of stem cell-based therapies.


Assuntos
Divisão Celular , Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Sistema Nervoso/citologia , Proteínas Nucleares/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , RNA/genética , Proteínas Repressoras/fisiologia , Proteína do Retinoblastoma/fisiologia , Células-Tronco/citologia , Animais , Proliferação de Células , Eletroporação , Feminino , Camundongos , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1 , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética
12.
Science ; 298(5593): 601-4, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12228721

RESUMO

Mechanisms regulating self-renewal and cell fate decisions in mammalian stem cells are poorly understood. We determined global gene expression profiles for mouse and human hematopoietic stem cells and other stages of the hematopoietic hierarchy. Murine and human hematopoietic stem cells share a number of expressed gene products, which define key conserved regulatory pathways in this developmental system. Moreover, in the mouse, a portion of the genetic program of hematopoietic stem cells is shared with embryonic and neural stem cells. This overlapping set of gene products represents a molecular signature of stem cells.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco/fisiologia , Células-Tronco Totipotentes/fisiologia , Adulto , Animais , Comunicação Celular , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Separação Celular , Células Cultivadas , Biologia Computacional , Embrião de Mamíferos/citologia , Etiquetas de Sequências Expressas , Genes Homeobox , Hematopoese , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA