Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Environ Health Res ; 32(10): 2247-2259, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34293966

RESUMO

OBJECTIVE: 5.8 GHz spectrum is gaining more attention in wireless technology. To explore the potential hazards, we investigated the effect of exposure to 5.8 GHz microwave on learning and memory ability of rats. Methods: Morris Water maze (MWM), Novel object recognition (NOR) and Fear conditioning test (FCT) were used to evaluate the ability of spatial and non-spatial memory of rats. The hippocampal morphology, the level of brain injury factors in serum and the mitochondrial membrane potential of hippocampal neurons was examined to evaluate the damage of hippocampal neurons. The density of dendritic spines, the ultrastructure of synapses and the level of PSD95, Synaptophysin, p-CREB and CREB were detected to evaluate the hippocampal synaptic plasticity. RESULTS: Compared with Sham group, there was no significant difference in the performance of ethology (in MWM, NOR, FCT) in Microwave 2 h group or Microwave 4 h group. The hippocampal morphology, the serum level of brain injury factors and the content of mitochondrial JC-1 monomer in Microwave 2 h group or Microwave 4 h group did not change obviously, compared with Sham group. The density of dendritic spines, the ultrastructure of synapse and the level of PSD95, Synaptophysin, p-CREB and CREB in hippocampus in Microwave 2 h group or Microwave 4 h group did not significantly change, compared with Sham group. CONCLUSION: Under this experimental condition, exposure to 5.8 GHz microwave could not affect the hippocampal synaptic plasticity of rats.


Assuntos
Lesões Encefálicas , Hipocampo , Animais , Ratos , Hipocampo/metabolismo , Aprendizagem em Labirinto , Plasticidade Neuronal , Sinaptofisina/metabolismo , Sinaptofisina/farmacologia
2.
Int J Environ Health Res ; : 1-12, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36413628

RESUMO

The rapid development of 5G network technology has gained much popularity as well as concerns about its adverse effects. In this study, we investigated the effects of 4.9 GHz (one of working frequencies of 5G communication) radiofrequency (RF) field on emotional behaviours and spatial memory in adult male mice. Open field test (OFT), tail suspension test (TST) and Y maze were used to evaluate anxiety, depression-like behaviour and spatial memory ability, respectively. It was found that the anxiety-like behaviour and spatial memory ability of mice did not change, but the depression-like behaviour was induced in mice after 4.9 GHz RF exposure. In addition, the number of neurons significantly reduced and the level of pyroptosis obviously increased in amygdala rather than hippocampus. These results suggested that 4.9 GHz RF exposure could induce depression-like behaviour, which might be associated with the neuronal pyroptosis in amygdala.

3.
BMC Neurosci ; 21(1): 21, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32397959

RESUMO

BACKGROUND: Transcranial direct current stimulation (tDCS) is a non-invasive brain modulation technique that has been proved to exert beneficial effects in the acute phase of stroke. To explore the underlying mechanism, we investigated the neuroprotective effects of cathodal tDCS on brain injury caused by middle cerebral artery occlusion (MCAO). RESULTS: We established the MCAO model and sham MCAO model with an epicranial electrode implanted adult male Sprague-Dawley rats, and then they were randomly divided into four groups (MCAO + tDCS, MCAO + sham tDCS (Sham), Control + tDCS and Control + Sham group). In this study, the severity degree of neurological deficit, the morphology of brain damage, the apoptosis, the level of neuron-specific enolase and inflammatory factors, the activation of glial cells was detected. The results showed that cathodal tDCS significantly improved the level of neurological deficit and the brain morphology, reduced the brain damage area and apoptotic index, and increased the number of Nissl body in MCAO rats, compared with MCAO + Sham group. Meanwhile, the high level of NSE, inflammatory factors, Caspase 3 and Bax/Bcl2 ratio in MCAO rats was reduced by cathodal tDCS. Additionally, cathodal tDCS inhibited the activation of astrocyte and microglia induced by MCAO. No difference was found in two Control groups. CONCLUSION: Our results suggested that cathodal tDCS could accelerate the recovery of neurologic deficit and brain damage caused by MCAO. The inhibition of neuroinflammation and apoptosis resulted from cathodal tDCS may be involved in the neuroprotective process.


Assuntos
Isquemia Encefálica/terapia , Encéfalo/cirurgia , Acidente Vascular Cerebral/terapia , Estimulação Transcraniana por Corrente Contínua , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Masculino , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ratos Sprague-Dawley , Acidente Vascular Cerebral/fisiopatologia , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Bioelectromagnetics ; 39(5): 386-393, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29709060

RESUMO

To investigate the effects of 1.8 GHz radiofrequency (RF) field on bone microstructure and metabolism of femur in mice, C57BL/6 mice (male, age 4 weeks) were whole-body exposed or sham exposed to 1.8 GHz RF field. Specific absorption rates of whole body and bone were approximately 2.70 and 1.14 W/kg (6 h/day for 28 days). After exposure, microstructure and morphology of femur were observed by microcomputed tomography (micro-CT), Hematoxylin and Eosin (HE) and Masson staining. Subsequently, bone parameters were calculated directly from the reconstructed images, including structure model index, bone mineral density, trabecular bone volume/total volume, connectivity density, trabecular number, trabecular thickness, and trabecular separation. Biomarkers that reflect bone metabolism, such as serum total alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), and tartrate-resistant acid phosphatase 5b (TRACP-5b), were determined by biochemical assay methods. Micro-CT and histology results showed that there was no significant change in bone microstructure and the above parameters in RF group, compared with sham group. The activity of serum ALP and BALP increased 29.47% and 16.82%, respectively, in RF group, compared with sham group (P < 0.05). In addition, there were no significant differences in the activity of serum TRACP-5b between RF group and sham group. In brief, under present experimental conditions, we did not find support for an effect of 1.8 GHz RF field on bone microstructure; however, it might promote metabolic function of osteoblasts in mice. Bioelectromagnetics. 39:386-393, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Campos Eletromagnéticos , Fêmur/anatomia & histologia , Fêmur/metabolismo , Ondas de Rádio , Fosfatase Alcalina/sangue , Animais , Desenho de Equipamento , Fêmur/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Distribuição Aleatória , Fosfatase Ácida Resistente a Tartarato/sangue , Microtomografia por Raio-X
5.
Electromagn Biol Med ; 36(1): 1-7, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27355558

RESUMO

The biological effects of electromagnetic pulse (EMP) on the brain have been focused on for years. It was reported that gelatinase played an important role in maintaining brain function through regulating permeability in the blood-brain barrier (BBB). To investigate the effects of EMP on gelatinase of BBB, an in vitro BBB model was established using primary cultured rat brain microvascular endothelial cells (BMVEC), astrocytes and half-contact culture of these cells in a transwell chamber. Cultured supernatant and cells were collected at different time points after exposure to EMP (peak intensity 400 kV/m, rise time 10 ns, pulse width 350 ns, 0.5 pps and 200 pulses). Protein levels of cellular gelatinase MMP-2 and MMP-9, and endogenous inhibitor TIMP-1 and TIMP-2 were detected by Western blot. The activity of gelatinase in culture supernatant was detected by gelatin zymography. It was found that compared with the sham-exposed group, the protein level of MMP-2 was significantly increased at 6 h (p < 0.05), and the protein level of its endogenous inhibitor TIMP-2 did not change after EMP exposure. In addition, the protein levels of MMP-9 and its endogenous inhibitor TIMP-1 did not change after EMP exposure. Gelatin zymography results showed that the activity of MMP-2 in the inner pool and the outer pool of the transwell chamber was significantly increased at 6 h after EMP exposure compared with that of the sham group. These results suggested that EMP exposure could affect the expression and activity of MMP-2 in the BBB model.


Assuntos
Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/efeitos da radiação , Fenômenos Eletromagnéticos , Gelatinases/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Masculino , Ratos , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo
6.
Sci Total Environ ; 927: 172391, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608899

RESUMO

The rapid development of 5G communication technology has increased public concern about the potential adverse effects on human health. Till now, the impacts of radiofrequency radiation (RFR) from 5G communication on the central nervous system and gut-brain axis are still unclear. Therefore, we investigated the effects of 3.5 GHz (a frequency commonly used in 5G communication) RFR on neurobehavior, gut microbiota, and gut-brain axis metabolites in mice. The results showed that exposure to 3.5 GHz RFR at 50 W/m2 for 1 h over 35 d induced anxiety-like behaviour in mice, accompanied by NLRP3-dependent neuronal pyroptosis in CA3 region of the dorsal hippocampus. In addition, the microbial composition was widely divergent between the sham and RFR groups. 3.5 GHz RFR also caused changes in metabolites of feces, serum, and brain. The differential metabolites were mainly enriched in glycerophospholipid metabolism, tryptophan metabolism, and arginine biosynthesis. Further correlation analysis showed that gut microbiota dysbiosis was associated with differential metabolites. Based on the above results, we speculate that dysfunctional intestinal flora and metabolites may be involved in RFR-induced anxiety-like behaviour in mice through neuronal pyroptosis in the brain. The findings provide novel insights into the mechanism of 5G RFR-induced neurotoxicity.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Microbioma Gastrointestinal/fisiologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ondas de Rádio/efeitos adversos , Inflamassomos/metabolismo , Neurônios , Masculino , Comportamento Animal/efeitos da radiação
7.
Biomed Environ Sci ; 26(2): 128-37, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23336136

RESUMO

OBJECTIVE: To study the effect of electromagnetic pulse (EMP) exposure on permeability of in vitro blood-brain-barrier (BBB) model. METHODS: An in vitro BBB model, established by co-culturing brain microvascular endothelial cells (BMVEC) and astroglial cells (AC) isolated from rat brain, was exposed to EMP at 100 kV/m and 400 kV/m, respectively. Permeability of the model was assayed by measuring the transendothelial electrical resistance (TEER) and the horseradish peroxidase (HRP) transmission at different time points. Levels of BBB tight junction-related proteins were measured at 0, 1, 2, 4, 8, 12, 16, 20, 24 h after EMP exposure by Western blotting. RESULTS: The TEER level was lower in BBB model group than in control group at 12 h after EMP, exposure which returned to its normal level at 24 h. The 24 h recovery process was triphasic and biphasic respectively after EMP exposure at 100 kV/m and 400 kV/m. Following exposure to 400 kV/m EMP, the HRP permeability increased at 1-12 h and returned to its normal level at 24 h. Western blotting showed that the claudin-5 and ZO-1 protein levels were changed after EMP exposure. CONCLUSION: EMP exposure at 100 kV/m and 400 kV/m can increase the permeability of in vitro BBB model and BBB tight junction-related proteins such as ZO-1 and claudin-5 may change EMP-induced BBB permeability.


Assuntos
Barreira Hematoencefálica/efeitos da radiação , Permeabilidade Capilar/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Animais , Células Cultivadas , Feminino , Ratos , Ratos Sprague-Dawley
8.
Artigo em Zh | MEDLINE | ID: mdl-23595299

RESUMO

OBJECTIVE: To investigate the effect of long-term power frequency electromagnetic field (50 Hz) exposure on the proliferation and apoptosis of human lens epithelial cells (SRA01/04 cells). METHODS: SRA01/04 cells in the exponential growth phase were exposed or sham-exposed to power frequency electromagnetic field (50 Hz, 2.3 mT) for 2 hours per day, 5 days every week. After 11 weeks of exposure, the cells were collected; the cell morphology was observed under a microscope, the cell viability was measured by MTT assay, the cell cycle and apoptosis were examined by flow cytometry, and the protein expression levels of cyclin D and proliferating cell nuclear antigen (PCNA) were determined by western blot. RESULTS: Compared with the sham-exposed SRA01/04 cells, most exposed cells became rounded and more stereoscopic, and heterochromatin gathered near the nuclear membrane in some exposed cells. The MTT assay showed that the viability of exposed cells was significantly increased compared with that of the sham-exposed cells (P < 0.05). Long-term power frequency electromagnetic field exposure led to significantly increased number of cells in S phase (P < 0.05), and the proliferation index was significantly higher in the exposed cells than in the sham-exposed cells (P < 0.05). There was no significant difference in apoptotic rate between the exposed cells and sham-exposed cells (P > 0.05). The exposed cells had significantly higher protein expression levels of cyclin D and PCNA than the sham-exposed cells (P < 0.05). CONCLUSION: Long-term power frequency electromagnetic field exposure can promote cellular proliferation and change cell cycle in SRA01/04 cells, but it has no marked effect on the apoptosis of SRA01/04 cells.


Assuntos
Apoptose , Proliferação de Células , Campos Eletromagnéticos/efeitos adversos , Células Epiteliais/citologia , Linhagem Celular , Ciclina D1/metabolismo , Exposição Ambiental/efeitos adversos , Humanos , Cristalino/citologia , Antígeno Nuclear de Célula em Proliferação/metabolismo
9.
Biomed Environ Sci ; 25(2): 197-202, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22998827

RESUMO

OBJECTIVE: To investigate the expression of occludin, ZO-1, MMP-2, and MMP-9 in cerebral microvasculature following Pulse Electromagnetic Field (PEMF) induced BBB permeability change. METHODS: Sprague-Dawley rats were randomized into PEMF and sham exposed groups (n = 8). After exposure to PEMF at 0.5, 1, 3, 6, and 12 h, BBB permeability was measured by Evans-Blue extravasation. The expression of occludin, ZO-1, MMP-2, and MMP-9 were detected by real-time quantitative reverse transcriptase PCR and western blotting. MMP-2 and MMP-9 activity were detected by EnzChek gelatinase assay. RESULTS: Compared with the sham group, PEMF exposure led to increased permeability of the BBB to EB, which was prolonged after exposure. BBB permeability became progressively more severe, and recovered at 6 h. The gene and protein expression of occludin and ZO-1 were significantly decreased, while MMP-2 and MMP-9 expression were significantly increased after exposure to PEMF. All levels of expression recovered 12 h following PEMF. CONCLUSION: Changes to BBB permeability were related to the alteration expression of tight junction proteins and matrix metalloproteinase after exposure to PEMF.


Assuntos
Barreira Hematoencefálica , Campos Eletromagnéticos , Metaloproteinases da Matriz/metabolismo , Proteínas/metabolismo , Junções Íntimas/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
10.
Artigo em Zh | MEDLINE | ID: mdl-22804880

RESUMO

OBJECTIVE: To study the effects of electromagnetic pulse (EMP) exposure on the morphological change and excretion functions of mouse microglia (BV-2) cells and possible mechanism. METHODS: BV-2 cells were divided into two groups: the group exposed to EMP at 200 kV/m for 200 pulses and sham exposure group. At 1, 6, 12 and 24 hour after exposure the cells and culture supernatant were collected. Cellular morphological change was observed under invert microscope, the levels of TNF-α, IL-1ß and IL-10 in culture supernatant were determined by enzyme-linked immunosorbent assay (ELISA), nitric oxide (NO) and reactive oxygen species (ROS) were detected by nitrate reductase method and DCFH-DA probe, respectively. The protein and phosphorylation levels of ERK, JNK and p38 were measured by Western Blot method. After the cells pre-treated with the inhibitor of p38 (SB203580) were exposed to EMP, the levels of NO and ROS in culture supernatant were detected. RESULTS: It was found that the large ameboid shape appeared in some microglia cells exposed to EMP for 1, 6 and 12 h. Moreover, the number of microglia cells with ameboid shape increased significantly at 1 h, 6 h and 12 h after EMP exposure compared with sham group (P < 0.05). The levels of cytokines, such as TNF-α, IL-1ß and IL-10, in culture supernatant did not change obviously after EMP exposure. The levels of NO and ROS increased significantly at 1h after EMP exposure, reached the peak at 6 h, began to recover at 12 h and recovered to sham group level at 24 h (P < 0.05). Western blot results showed that the protein and protein phosphorylation levels of ERK and JNK did not change significantly after EMP exposure, however, the protein and protein phosphorylation levels of p38 increased obviously at 1 h and 6 h after EMP exposure, compared with sham group (P < 0.05). In addition, the pretreatment of p38 inhibitor (SB203580) significantly decreased NO and ROS production induced by EMP. CONCLUSION: EMP exposure may activate microglia cells and promote the production of NO and ROS in mouse microglia cells, and p38 pathway is involved in this process.


Assuntos
Campos Eletromagnéticos , Microglia/citologia , Microglia/metabolismo , Animais , Linhagem Celular , Citocinas/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
Int J Radiat Biol ; 98(8): 1316-1329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130116

RESUMO

PURPOSE: To clarify the preventive and therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on brain injury induced by X-ray cranial irradiation, preliminarily identify the mechanism and provide a novel clinical approach for the prevention and treatment of radiation-induced brain injury (RBI). MATERIALS AND METHODS: Male C57BL/6 mice were randomly divided into the sham group, large fractionated dose (5 Gy × 4 d) group, large fractionated dose + rTMS (5 Gy × 4 d + rTMS) group, conventional fractionated dose (2 Gy × 10 d) group and conventional fractionated dose + rTMS (2 Gy × 10 d + rTMS) group. After cranial irradiation and rTMS, behavioral experiments, morphological staining and molecular biology experiments were performed. We further determined the mechanism of rTMS on the prevention and treatment of RBI, including changes in hippocampal neuronal apoptosis, neural stem cell (NSC) proliferation and differentiation, and neuronal synaptic plasticity. RESULTS: rTMS alleviated the negative effects of cranial radiation on the general health of mice and promoted their recovery. rTMS ameliorated the impairment of spatial learning and memory induced by cranial radiation, and this beneficial effect was more robust in the conventional fractionated dose group than the large fractionated dose group. Moreover, rTMS alleviated the alterations in hippocampal structure and neuronal death and had preventive and therapeutic effects against RBI. In addition, rTMS reduced hippocampal cell apoptosis, promoted NSC proliferation and differentiation in the hippocampus after cranial irradiation, and enhanced neuronal synaptic plasticity in the hippocampus. Subsequent studies showed that rTMS upregulated the expression of learning- and memory-related proteins. CONCLUSION: rTMS could alleviate learning and memory impairment caused by RBI, and the preventive and therapeutic effects of rTMS were better for the conventional fraction radiation paradigms.


Assuntos
Lesões Encefálicas , Lesões Experimentais por Radiação , Estimulação Magnética Transcraniana , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Lesões Experimentais por Radiação/terapia , Resultado do Tratamento
12.
Front Physiol ; 13: 984429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091371

RESUMO

The study aimed to elucidate abscopal effects of thoracic X-ray irradiation on spermatogenesis in mice. Male C57BL/6 mice were randomly divided into sham group and radiation group, and subjected to thorax fractionated X-ray irradiation or sham irradiation with the total dose of 5 Gy/day for each animal for four consecutive days. After irradiation, sperm morphology was observed, and sperm number was counted under microscope, and sperm apoptosis was detected by flow cytometry. Meanwhile, testis index was calculated, testicular morphology was observed using haematoxylin-eosin (HE) staining, and testicular ultrastructure was observed under transmission electron microscopy. The permeability of blood-testis barrier (BTB) was detected by Evans Blue fluorescence colorimetry. The protein levels of Bcl-2 associated X protein (Bax), B-cell leukemia-lymphoma-2 (Bcl-2) and Cleaved caspase 3, promyelocytic leukaemia zinc finger (PLZF) and c-kit proto-oncogene (c-kit) in testes were determined by western blotting (WB). The location of apoptotic cells was confirmed by terminal deoxynucleotidyl transferase (TdT) enzymaticated dUTP nick end labelling (TUNEL) assay. The levels of tumor necrosis factor alpha (TNF-α), transforming growth factor-ß1 (TGF-ß1), interleukin 10 (IL-10) were measured by enzyme-linked immunosorbent assay (ELISA). The levels of Total superoxide dismutase (T-SOD) and malondialdehyde (MDA) were measured by the biochemical assay kit. Compared with sham group, the sperm quality of mice in radiation group showed decreased number and survival rate, along with increased abnormality and total apoptosis rate. The testis index of irradiated mice was lower, the testicular apoptosis was increased, and their testicular histology and ultrastructure was severely damaged. The permeability of BTB was increased, the level of PLZF in testis was decreased, and the level of c-kit was increased by irradiation. After irradiation, the levels of TNF-α, TGF-ß1, IL-10, T-SOD and MDA in testes were significantly changed. Taken together, abscopal effects of thoracic X-ray irradiation on spermatogenesis were obvious, which could decrease sperm quality and damage testicular morphology and increase the permeability of BTB, and a series of inflammation and oxidative stress factors were involved in the process. These findings provide novel insights into prevention and treatment for male reproductive damage induced by clinical thoracic irradiation.

13.
Phytother Res ; 25(5): 644-53, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21031634

RESUMO

The aim of this study was to investigate the protective effects of three glycosides (rhodioside, ciwujianoside-B and astragaloside IV) on the hematopoietic system in the mice exposed to γ-rays, and to examine the possible mechanisms involved. Mice were pretreated with the glycosides (40 mg/kg, i.g.) daily for 7 days prior to radiation. The survival of mice pretreated with three glycosides after total body irradiation (6.0 Gy) was examined. Peripheral blood leucocytes and endogenous spleen colony counts, colony-forming unit-granulocyte macrophage assay, analysis of DNA content and apoptosis rate determination were performed to evaluate the effects of the three glycosides on hematogenesis. The fragmentation of double-stranded DNA in lymphocytes was detected by the comet assay. The changes in cell cycle were analysed by flow cytometry. Furthermore, the expression levels of Bcl-2, Bax and nuclear factor-kappa B (NF-κB) were measured by western blot and the electrophoretic mobility shift assay. The results showed that pretreatment with all of the glycosides improved survival time and increased the number of leucocytes, spleen colonies and granulocyte-macrophage colonies in mice exposed to 6.0 Gy γ-radiation. Rhodioside showed more protective efficacy than both ciwujianoside-B and astragaloside IV. All three glycosides significantly increased the proliferation abilities of bone marrow cells, and decreased the ratio of cells in G(0)/G(1) phase. Further analysis showed that these three glycosides were able to decrease DNA damage and the increment in the Bax/Bcl-2 ratio induced by radiation. In summary, the three glycosides showed radioprotective effects on the hematopoietic system in mice, which was associated with changes in the cell cycle, a reduction in DNA damage, and down-regulation of the ratio of Bax/Bcl-2 in bone marrow cells exposed to radiation.


Assuntos
Astragalus propinquus/química , Eleutherococcus/química , Glicosídeos/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Rhodiola/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos da radiação , Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Raios gama/efeitos adversos , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/efeitos da radiação , Leucócitos/efeitos dos fármacos , Leucócitos/efeitos da radiação , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB C , Lesões Experimentais por Radiação/mortalidade , Distribuição Aleatória , Saponinas/farmacologia , Células-Tronco/efeitos dos fármacos , Triterpenos/farmacologia , Irradiação Corporal Total , Proteína X Associada a bcl-2/efeitos dos fármacos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
14.
Front Physiol ; 12: 717571, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867437

RESUMO

To investigate whether the abscopal effects of cranial irradiation (C-irradiation) cause testicular damage in mice, male C57BL/6 mice (9weeks of age) were randomly divided into a sham irradiation group, a shielded group and a C-irradiation group and administered sham/shielded irradiation or C-irradiation at a dose rate of 2.33Gy/min (5Gy/d for 4 d consecutively). All mice were sacrificed at 4weeks after C-irradiation. We calculated the testis index, observed testicular histology by haematoxylin-eosin (HE) staining and observed testicular ultrastructure by transmission electron microscopy. Western blotting was used to determine the protein levels of Bax, Bcl-2, Cleaved caspase 3, glial cell line-derived neurotrophic factor (GDNF) and stem cell factor (SCF) in the testes of mice. Immunofluorescence staining was performed to detect the expression of Cleaved caspase 3 and 3ß hydroxysteroid dehydrogenase (3ßHSD), and a TUNEL assay was used to confirm the location of apoptotic cells. The levels of testosterone (T), GDNF and SCF were measured by ELISA. We also evaluated the sperm quality in the cauda epididymides by measuring the sperm count, abnormality, survival rate and apoptosis rate. The results showed that there was no significant difference in testicular histology, ultrastructure or sperm quality between the shielded group and sham group. Compared with the sham/shielded group, the C-irradiation group exhibited a lower testis index and severely damaged testicular histology and ultrastructure at 4weeks after C-irradiation. The levels of apoptosis in the testes increased markedly in the C-irradiation group, especially in spermatogonial stem cells. The levels of serum T and testicular 3ßHSD did not obviously differ between the sham group and the C-irradiation group, but the levels of GDNF and SCF in the testes increased in the C-irradiation group, compared with the sham group. In addition, the sperm count and survival rate decreased in the C-irradiation group, while the abnormality and apoptosis rate increased. Under these experimental conditions, the abscopal effects of C-irradiation induced testicular damage with regard to both structure and function and ultimately decreased sperm quality in mice. These findings provide novel insights into prevention and treatment targets for male reproductive damage induced by C-irradiation.

15.
Biomed Environ Sci ; 22(6): 518-21, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20337226

RESUMO

OBJECTIVE: To study the effects of electromagnetic pulse (EMP) on bone metabolism of mice in vivo. METHODS: Twenty-four male BALB/c mice were divided into a control group and 2 experimental groups (n=8). The whole-body of mice in experimental groups were exposed to 50 kV/m and 400kV/m EMP, 400 pulses daily for 7 consecutive days at 2 seconds intervals. Alkaline phosphotase (ALP) activity, serum calcium concentration and osteocalcin level and trabecular bone volume (BV/TV, %) were measured immediately after EMP exposure by biochemical, ELISA and morphological methods. RESULTS: The ALP activity, serum calcium concentration and osteocalcin level and BV/TV in experimental groups remained unchanged after EMP exposure. Conclusion Under our experimental conditions, EMP exposure cannot affect bone metabolism of mice in vivo.


Assuntos
Osso e Ossos/metabolismo , Campos Eletromagnéticos , Fosfatase Alcalina , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Osteocalcina/sangue
16.
Biomed Environ Sci ; 22(5): 374-80, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20163061

RESUMO

OBJECTIVE: To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). METHODS: Cells were exposed to sham or 1950 MHz continuous-wave for 1 h. Specific absorption rates (SARs) were 1 and 10 W/kg. Localization and expression of Hsp27 and phosphorylated Hsp27 ((78) Ser) (p-Hsp27) were examined by immunocytochemistry. Expression levels of Hsp27, p-Hs27, and Hsp70 were determined by Western blotting. RESULTS: The Hsp27 was primarily located within the cytoplasm, p-Hsp27 in both cytoplasm and nuclei of MO54, A172, and T98 cells. RF field exposure did not affect the distribution or expression of Hsp27. In addition, Western blotting showed no significant differences in protein expression of Hsp27 or Hsp70 between sham- and RF field-exposed cells at a SAR of 1 W/kg and 10 W/kg for 1 h in three cells lines. Exposure to RF field at a SAR of 10 W/kg for 1 h slightly decreased the protein level of phosphorylated Hsp27 in MO54 cells. CONCLUSION: The 1950 MHz RF field has only little or no apparent effect on Hsp70 and Hsp27 expression in MO54, A172, and T98 cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioma , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Neuroglia/efeitos da radiação , Linhagem Celular Tumoral , Proteínas de Choque Térmico/genética , Humanos , Proteínas de Neoplasias/genética , Transporte Proteico
17.
Biomed Environ Sci ; 22(3): 265-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19725471

RESUMO

OBJECTIVE: To observe the effect of electromagnetic pulse (EMP) exposure on cerebral micro vascular permeability in rats. METHODS: The whole-body of male Sprague-Dawley rats were exposed or sham exposed to 200 pulses or 400 pulses (1 Hz) of EMP at 200 kV/m. At 0.5, 1, 3, 6, and 12 h after EMP exposure, the permeability of cerebral micro vascular was detected by transmission electron microscopy and immunohistochemistry using lanthanum nitrate and endogenous albumin as vascular tracers, respectively. RESULTS: The lanthanum nitrate tracer was limited to the micro vascular lumen with no lanthanum nitrate or albumin tracer extravasation in control rat brain. After EMP exposure, the lanthanum nitrate ions reached the tight junction, basal lamina and pericapillary tissue. Similarly, the albumin immunopositive staining was identified in pericapillary tissue. The changes in brain micro vascular permeability were transient, the leakage of micro vascular vessels appeared at 1 h, and reached its peak at 3 h, and nearly recovered at 12 h, after EMP exposure. In addition, the leakage of micro vascular was more obvious after exposure of EMP at 400 pulses than after exposure of EMP at 200 pulses. CONCLUSION: Exposure to 200 and 400 pulses (1 Hz) of EMP at 200 kV/m can increase cerebral micro vascular permeability in rats, which is recoverable.


Assuntos
Encéfalo/irrigação sanguínea , Permeabilidade Capilar/fisiologia , Campos Eletromagnéticos/efeitos adversos , Animais , Eletrofisiologia , Masculino , Ratos , Ratos Sprague-Dawley
18.
Artigo em Zh | MEDLINE | ID: mdl-20137299

RESUMO

OBJECTIVE: To study the effect of electromagnetic pulse (EMP) on the permeability of blood-brain barrier, tight junction (TJ)-associated protein expression and localization in rats. METHODS: 66 male SD rats, weighing (200 approximately 250) g, were sham or whole-body exposed to EMP at 200 kV/m for 200 pulses. The repetition rate was 1 Hz. The permeability of the blood-brain barrier in rats was assessed by albumin immunohistochemistry. The expression of typical tight junction protein ZO-1 and occludin in both cerebral cortex homogenate and cerebral cortex microvessel homogenate was analyzed by the Western blotting and the distribution of ZO-1 and occludin was examined by immunofluorescence microscopy. RESULTS: In the sham exposure rats, no brain capillaries showed albumin leakage, at 0.5 h after 200 kV/m EMP exposure for 200 pulses; a few brain capillaries with extravasated serum albumin was found, with the time extended, the number of brain capillaries with extravasated serum albumin increased, and reached the peak at 3 h, then began to recover at 6 h. In addition, no change in the distribution of the occludin was found after EMP exposure. Total occludin expression had no significant change compared with the control. However, the expression level of ZO-1 significantly decreased at 1 h and 3 h after EMP exposure in both cerebral cortex homogenate and cerebral cortex microvessel homogenate. Furthermore, immunofluorescence studies also showed alterations in ZO-1 protein localization in cerebral cortex microvessel. CONCLUSION: The EMP exposure (200 kV/m, 200 pulses) could increase blood-brain barrier permeability in rat, and this change is associated with specific alterations in tight junction protein ZO-1.


Assuntos
Barreira Hematoencefálica/efeitos da radiação , Permeabilidade Capilar/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Animais , Encéfalo/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1
19.
Artigo em Inglês | MEDLINE | ID: mdl-30974849

RESUMO

Under some occupational conditions, workers are inevitably exposed to high-intensity radiofrequency (RF) fields. In this study, we investigated the effects of one-month exposure to a 220 MHz pulsed modulated RF field at the power density of 50 W/m² on the sperm quality in male adult rats. The sperm quality was evaluated by measuring the number, abnormality and survival rate of sperm cells. The morphology of testis was examined by hematoxylin-eosin (HE) staining. The levels of secreting factors by Sertoli cells (SCs) and Leydig cells (LCs) were determined by enzyme linked immunosorbent assay (ELISA). The level of cleaved caspase 3 in the testis was detected by immunofluorescence staining. Finally, the expression levels of the apoptosis-related protein (caspase 3, BAX and BCL2) in the testis were assessed by Western blotting. Compared with the sham group, the sperm quality in the RF group decreased significantly. The levels of secreting factors of SCs and the morphology of the testis showed an obvious change after RF exposure. The level of the secreting factor of LCs decreased significantly after RF exposure. The levels of cleaved caspase 3, caspase 3, and the BAX/BCL2 ratio in the testis increased markedly after RF exposure. These data collectively suggested that under the present experimental conditions, 220 MHz pulsed modulated RF exposure could impair sperm quality in rats, and the disruption of the secreting function of LCs and increased apoptosis of testis cells induced by the RF field might be accounted for by this damaging effect.


Assuntos
Ondas de Rádio , Espermatozoides , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Masculino , Ratos Sprague-Dawley , Contagem de Espermatozoides , Espermatozoides/anormalidades , Espermatozoides/fisiologia , Testículo/metabolismo
20.
Biomed Environ Sci ; 21(3): 218-21, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18714819

RESUMO

OBJECTIVE: To study the effect of electromagnetic pulse (EMP) exposure on the permeability of blood-testicle barrier (BTB) in mice. METHODS: Adult male BALB/c mice were exposed to EMP at 200 kV/m for 200 pulses with 2 seconds interval. The mice were injected with 2% Evans Blue solution through caudal vein at different time points after exposure, and the permeability of BTB was monitored using a fluorescence microscope. The testis sample for the transmission electron microscopy was prepared at 2 h after EMP exposure. The permeability of BTB in mice was observed by using Evans Blue tracer and lanthanum nitrate tracer. RESULTS: After exposure, cloudy Evans Blue was found in the testicle convoluted seminiferous tubule of mice. Lanthanum nitrate was observed not only between testicle spermatogonia near seminiferous tubule wall and sertoli cells, but also between sertoli cells and primary spermatocyte or secondary spermatocyte. In contrast, lanthanum nitrate in control group was only found in the testicle sertoli cells between seminiferous tubule and near seminiferous tubule wall. CONCLUSION: EMP exposure could increase the permeability of BTB in the mice.


Assuntos
Barreira Hematotesticular/efeitos da radiação , Campos Eletromagnéticos , Animais , Barreira Hematotesticular/metabolismo , Corantes , Azul Evans , Lantânio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Permeabilidade/efeitos da radiação , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA