Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Nano Lett ; 24(10): 3028-3035, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38411557

RESUMO

Multicolor afterglow patterns with transparent and traceless features are important for the exploration of new functionalities and applications. Herein, we report a direct in situ patterning technique for fabricating afterglow carbon dots (CDs) based on laser direct writing (LDW) for the first time. We explore a facile step-scanning method that reduces the heat-affected zone and avoids uneven heating, thus producing a fine-resolution afterglow CD pattern with a minimum line width of 80 µm. Unlike previous LDW-induced luminescence patterns, the patterned CD films are traceless and transparent, which is mainly attributed to a uniform heat distribution and gentle temperature rise process. Interestingly, by regulating the laser parameters and CD precursors, an increased carbonization and oxidation degree of CDs could be obtained, thus enabling time-dependent, tunable afterglow colors from blue to red. In addition, we demonstrate their potential applications in the in situ fabrication of flexible and stretchable optoelectronics.

2.
Small ; : e2403292, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958094

RESUMO

Antimony selenide (Sb2Se3) has sparked significant interest in high-efficiency photovoltaic applications due to its advantageous material and optoelectronic properties. In recent years, there has been considerable development in this area. Nonetheless, defects and suboptimal [hk0] crystal orientation expressively limit further device efficiency enhancement. This study used Zinc (Zn) to adjust the interfacial energy band and strengthen carrier transport. For the first time, it is discovered that the diffusion of Zn in the cadmium sulfide (CdS) buffer layer can affect the crystalline orientation of the Sb2Se3 thin films in the superstrate structure. The effect of Zn diffusion on the morphology of Sb2Se3 thin films with CdxZn1-xS buffer layer has been investigated in detail. Additionally, Zn doping promotes forming Sb2Se3 thin films with the desired [hk1] orientation, resulting in denser and larger grain sizes which will eventually regulate the defect density. Finally, based on the energy band structure and high-quality Sb2Se3 thin films, this study achieves a champion power conversion efficiency (PCE) of 8.76%, with a VOC of 458 mV, a JSC of 28.13 mA cm-2, and an FF of 67.85%. Overall, this study explores the growth mechanism of Sb2Se3 thin films, which can lead to further improvements in the efficiency of Sb2Se3 solar cells.

3.
Phys Chem Chem Phys ; 26(16): 12778-12785, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38619587

RESUMO

Carbon materials with full sp2-hybridized buckling is a major challenge pervading fundamental nanoscience and nanotechnology research. Carbon atoms that are sp2 hybridized prefer to form hexagonal rings, such as in carbon nanotubes and graphene, which are low-dimensional materials. The incorporation of heptagonal, octagonal, and/or larger rings into a hexagonal sp2 carbon meshwork has been identified as a strategy for assembling three-dimensional (3D) sp2 carbon crystals, and one of the typical representatives are Schwarzite carbons, which possess a negative surface Gaussian curvature as well as unique physical properties. Herein, a 3D Schwarzite carbon consisting of only sp2-buckled heptagonal carbon rings, which is referred to as Hepta-carbon, is proposed based on first-principles calculations. Hepta-carbon is mechanically and thermodynamically stable, and energetically more favourable than experimental graphdiyne, fullerene C20 and most Schwarzite carbons under ambient conditions. Molecular dynamics simulations indicate that Hepta-carbon exhibits high-temperature thermostability up to 1500 K. Band structure and mechanical property simulations indicate that Hepta-carbon is a semi-metallic material with electron conduction and exhibits impressive mechanical properties such as high strength with quasi-isotropy, high incompressibility similar to diamonds, elastic deformation behaviour under uniaxial stress, and high ductility. Hepta-carbon presents a porous network with a low mass density of 1.84 g cm-3 and connected channels with diameters of 3.3-6.1 Å. Theoretical simulations of gas adsorption energy demonstrate that Hepta-carbon can effectively adsorb and stabilize greenhouse gases, including N2O, CO2, CH4, and SF6.

4.
Angew Chem Int Ed Engl ; 63(17): e202400205, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436587

RESUMO

The perovskite/silicon tandem solar cell (TSC) has attracted tremendous attention due to its potential to breakthrough the theoretical efficiency set for single-junction solar cells. However, the perovskite solar cell (PSC) designed as its top component cell suffers from severe photo-induced halide segregation owing to its mixed-halide strategy for achieving desirable wide-bandgap (1.68 eV). Developing pure-iodide wide-bandgap perovskites is a promising route to fabricate photostable perovskite/silicon TSCs. Here, we report efficient and photostable pure-iodide wide-bandgap PSCs made from an anti-solvent-free (ASF) technique. The ASF process is achieved by mixing two precursor solutions, both of which are capable of depositing corresponding perovskite films without involving anti-solvent. The mixed solution finally forms Cs0.3DMA0.2MA0.5PbI3 perovskite film with a bandgap of 1.68 eV. Furthermore, methylammonium chloride additive is applied to enhance the crystallinity and reduce the trap density of perovskite films. As a result, the pure-iodide wide-bandgap PSC delivers efficiency as high as 21.30 % with excellent photostability, the highest for this type of solar cells. The ASF method significantly improves the device reproducibility as compared with devices made from other anti-solvent methods. Our findings provide a novel recipe to prepare efficient and photostable wide-bandgap PSCs.

5.
Langmuir ; 39(48): 17427-17435, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37975860

RESUMO

Although the self-transport of liquid droplets by a gradient-textured substrate can break away from the energy input, the long distance and even continuous spontaneous motion of droplets will be limited by the length in the surface-gradient direction. This article introduces a novel design with a monolayer graphene-covered multibranch gradient groove surface (GMGGS). The design aims to achieve long-distance, continuous self-transport of a mercury (Hg) droplet by merging with other mercury droplets, and the process is carried out using molecular dynamics (MD) simulation. This method achieves the merging of mercury droplets through the structure of multibranch gradient grooves, and we have observed that the merged mercury droplet can be reaccelerated in the gradient groove. The results demonstrate that droplet merging allows for control over the surface morphology variations of mercury droplets within the gradient groove. This creates a forward pressure difference, which leads to reacceleration of the mercury droplets. In light of this mechanism, the trunk droplet can achieve long-distance continuous self-transport on the GMGGS by continuously merging with branch droplets. These findings will broaden our comprehension of droplet merging and self-transport behavior, offering corresponding theoretical support for the long-distance continuous self-transport of droplets.

6.
Langmuir ; 39(35): 12412-12419, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37620278

RESUMO

The disordered transformation of the ordered aligned polar liquid crystal molecules in liquid crystal elastomers (LCEs) under the influence of an external field imbues them with the unique property of thermally reversible shape memory, making them highly valuable for various applications, particularly in actuators. In this study, we examined the high dielectric constant exhibited by the orientation polarization of polar liquid crystal molecules in RM257-LCE films, which holds significant potential for developing flexible capacitive sensors. By manipulating the flexibility of the molecular chain network and introducing hydrogen bonds and metal ions into the main chain, we were able to enhance the relative dielectric constant of LCEs to an impressive value of 62 (at 100 Hz), which is approximately 23 times higher than for polydimethylsiloxane (PDMS). This elevated dielectric constant displays a noteworthy positive temperature coefficient within a specific temperature range, starting from room temperature and extending to the clearing point. Using this property, we fabricated highly sensitive capacitive, flexible temperature sensors. Moreover, we successfully engineered a flexible pressure sensor with an excellent pressure-sensing range of 0-2 MPa by combining the porous structure of the prepared LCEs with mushroom electrodes. Additionally, the sensor showcases a remarkable capacitance recovery time of 0.8 s at 90 °C. These outstanding features collectively contribute to the excellent pressure-sensing characteristics of our sensor. The findings of this study offer valuable insights and serve as a reference for the design of innovative flexible sensors, enabling advancements in sensor technology.

7.
Langmuir ; 38(23): 7190-7197, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35635021

RESUMO

Three-dimensional (3D) structural actuators based on monodomain liquid crystal elastomers (mLCEs) show a wide range of potential applications. A direct ink writing technique has been developed to print LCE structures. It is still a challenge to print high-precision 3D-mLCE actuators. Here, a method of wet 3D printing combined with freeze-drying is proposed. The coagulation bath is designed to restrain the nascent fiber disturbance of the capillary wave and weight by adjusting the ink viscosity and printing speed to control the LC molecular order, enabling uniform (B = 1.02) fibers with a high degree of orientational alignment (S = 0.45) of the mesogens. Furthermore, dynamic disulfide bond formation was used as the cross-linking point, which can allow the LCE network structure to be continuously cured to ensure adjacent layers are effectively bonded and, in combination with freeze-drying, produce the 3D-mLCE actuators of fidelity architecture (98.37 vol %) by printing. The actuators have excellent actuating strain (45.12%), and the dynamic disulfide bond makes them programmable. Finally, a printed bionic starfish and a printed bionic hand can easily grab regular and irregular objects. This work provides a feasible scheme for fabricating complex 3D-mLCEs with reversible changes in shape.

8.
Langmuir ; 38(4): 1560-1566, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061400

RESUMO

Liquid crystal elastomers (LCEs) with large deformation under external stimuli have attracted extensive attention in various applications such as soft robotics, 4D printing, and biomedical devices. However, it is still a great challenge to reduce the damage to collimation and enhance the mechanical and actuation properties of LCEs simultaneously. Here, we construct a new method of a double cross-linking network structure to improve the mechanical properties of LCEs. The ureidopyrimidinone (UPy) group with quadruple hydrogen bonds was used as the physical cross-linking unit, and pentaerythritol tetra(3-mercaptopropionate) was used as the chemical cross-link. The LCEs showed a strong mechanical tensile strength of 8.5 MPa and excellent thermally induced deformation (50%). In addition, the introduction of quadruple hydrogen bonds endows self-healing ability to extend the service life of LCEs. This provides a generic strategy for the fabrication of high-strength LCEs, inspiring the development of actuators and artificial muscles.


Assuntos
Elastômeros , Cristais Líquidos , Elastômeros/química , Ligação de Hidrogênio , Cristais Líquidos/química , Resistência à Tração
9.
Langmuir ; 38(10): 3257-3264, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230852

RESUMO

With the development of electric vehicles and products, lithium metal batteries with solid-state electrolytes have shown a broad application prospect. However, the uneven deposition of lithium, low ion conductivity, narrow electrochemical window, and high interfacial impedance limit the safety and performance of the solid-state batteries. Herein, we develop a non-ceramic solid electrolyte based on the graphene oxide aerogel frame filling with polyethylene oxide (GSPE). The resulting uniform and resilient framework structure form a continuous Li-ion adsorption zone, which ensures uniform ion-current distribution at the interface while obtaining the relatively high ionic conductivity, effectively preventing the uneven deposition of lithium, and thus greatly improving the battery stability. Comprehensive electrochemical analysis showed that GSPE achieved an ionic conductivity of 4.12 × 10-4 S cm-1 at 50 °C. The assembled LiFePO4(LFP) |GSPE| Li full battery can stably cycle for more than 100 cycles at 0.1 C, and the lithium symmetrical battery can continuously be plating-peeling for more than 600 h at 0.1 mA cm-2. The method of using the carbon aerogel structure to achieve the uniform deposition of lithium ions has explored a new possible research direction for all-solid-state batteries.

10.
Langmuir ; 38(16): 4948-4957, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35414176

RESUMO

Electrocatalysts with high cost-effectiveness for the oxygen reduction reaction (ORR) are essential for fuel cells (FC) and Zn-Air batteries (ZAB), which need highly active sites and suitable carbon substrates to accelerate the charge transfer kinetics. Herein, a simple and extensible method using ball milling and space-confinement pyrolysis is reported to prepare a series of transition metals and N-C catalysts (M-NLPC), which possess three-dimensional porous carbon substrates and dense active sites for efficient ORR. M-NLPC catalysts (especially Fe-NLPC) exhibit outstanding ORR activity with a half-wave potential (E1/2, 0.88 V) in an alkaline medium, high stability, and strong methanol resistance. The M-N4 sites are proven to be the active centers in M-NLPC by theoretical calculation, and methanol molecules are more likely to desorb than react on the Fe-N4 sites, which is the origin of the inactivity for the methanol oxidation reaction (MOR). Furthermore, Fe-NLPC was applied to membraneless alkaline direct methanol FC (DMFC) in practice, exhibiting outstanding performance. Meanwhile, the Fe-NLPC-based ZAB also shows excellent electrochemical performance.

11.
Macromol Rapid Commun ; 43(19): e2200320, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35766135

RESUMO

Hydrogels containing thermosensitive polymers such as poly(N-isopropylacrylamide) (P(NIPAm)) may contract during heating and show great promise in fields ranging from soft robotics to thermosensitive biosensors. However, these gels often exhibit low stiffness, tensile strength, and mechanical toughness, limiting their applicability. Through copolymerization of P(NIPAm) with poly(Acrylic acid) (P(AAc)) and introduction of ferric ions (Fe3+ ) that coordinate with functional groups along the P(AAc) chains, here a thermoresponsive hydrogel with enhanced mechanical extensibility, strength, and toughness is introduced. Using both experimentation and constitutive modeling, it is found that increasing the ratio of m(AAc):m(NIPAm) in the prepolymer decreases strength and toughness but improves extensibility. In contrast, increasing Fe3+ concentration generally improves strength and toughness with little decrease in extensibility. Due to reversible coordination of the Fe3+ bonds, these gels display excellent recovery of mechanical strength during cyclic loading and self-healing ability. While thermosensitive contraction imbued by the underlying P(NIPAm) decreases slightly with increased Fe3+ concentration, the temperature transition range is widened and shifted upward toward that of human body temperature (between 30 and 40 °C), perhaps rendering these gels suitable as in vivo biosensors. Finally, these gels display excellent adsorptive properties with a variety of materials, rendering them possible candidates in adhesive applications.


Assuntos
Hidrogéis , Polímeros , Humanos , Hidrogéis/química , Íons , Ligantes , Polimerização , Polímeros/química
12.
Sensors (Basel) ; 22(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35591116

RESUMO

With the rapid development of intelligent applications, the demand for high-sensitivity pressure sensor is increasing. However, the simple and efficient preparation of an industrial high-sensitivity sensor is still a challenge. In this study, adhesives with different elastic moduli are used to bond pressure-sensitive elements of double-sided sensitive grids to prepare a highly sensitive and fatigue-resistant pressure sensor. It was observed that the low elastic modulus adhesive effectively produced tensile and compressive strains on both sides of the sensitive grids to induce greater strain transfer efficiency in the pressure sensor, thus improving its sensitivity. The sensitivity of the sensor was simulated by finite element analysis to verify that the low elastic modulus adhesive could enhance the sensitivity of the sensor up to 12%. The preparation of high-precision and fatigue-resistant pressure sensors based on low elastic modulus, double-sided sensitive grids makes their application more flexible and convenient, which is urgently needed in the miniaturization and integration electronics field.


Assuntos
Adesivos , Fadiga , Adesivos/química , Módulo de Elasticidade , Análise de Elementos Finitos , Humanos , Pressão
13.
Angew Chem Int Ed Engl ; 61(33): e202205012, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35648576

RESUMO

All-inorganic CsPbI3 perovskite presents preeminent chemical stability and a desirable band gap as the front absorber for perovskite/silicon tandem solar cells. Unfortunately, CsPbI3 perovskite solar cells (PSCs) still show low efficiency due to high density of defects in solution-prepared CsPbI3 films. Herein, three kinds of hydrazide derivatives (benzoyl hydrazine (BH), formohydrazide (FH) and benzamide (BA)) are designed to reduce the defect density and stabilize the phase of CsPbI3 . Calculation and characterization results corroborate that the carboxyl and hydrazine groups in BH form strong chemical bonds with Pb2+ ions, resulting in synergetic double coordination. In addition, the hydrazine group in the BH also forms a hydrogen bond with iodine to assist the coordination. Consequently, a high efficiency of 20.47 % is achieved, which is the highest PCE among all pure CsPbI3 -based PSCs reported to date. In addition, an unencapsulated device showed excellent stability in ambient air.

14.
Langmuir ; 37(27): 8129-8138, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34210126

RESUMO

Both a superhydrophobic structure and layered double hydroxide (LDH) coating were effective to improve the corrosion resistance of alloys. In this study, a superhydrophobic composite coating based on LDHs was constructed on Mg alloy by laser treatment, in situ growth of Mg-Al LDHs, and modification with octadecyl-trimethoxy-silane (OTS). The so-obtained composite coating was coded as L-LDHs-OTS, where L stands for laser treatment. Results showed that the L-LDHs-OTS composite coating presented the best anti-corrosion performance and the corrosion current density was reduced by about 5 orders of magnitude compared with that of the Mg alloy substrate. The excellent corrosion resistance was related to the superhydrophobicity of the composite coating, the compactness and ion-exchange capacity of the LDH layer, and the dense Si-O-Si network within the OTS layer. Moreover, the L-LDHs-OTS composite coating was still effective after 20 days of immersion tests, showing good long-term corrosion resistance due to the existence of hydrophobicity of the composite coating and the self-healing ability of LDHs.

15.
Langmuir ; 37(46): 13696-13702, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34758614

RESUMO

Adhesive and self-healing elastomers are urgently needed for their convenience and intelligence in biological medicine, flexible electronics, intelligent residential systems, etc. However, their inevitable use in harsh environments results in further enhancement requirements of the structure and performance of adhesive and self-healing elastomers. Herein, a novel self-healing and high-adhesion silicone elastomer was designed by the synergistic effect of multiple dynamic bonds. It revealed excellent stretchability (368%) and self-healing properties at room temperature (98.1%, 5 h) and in a water environment (96.4% for 5 h). Meanwhile, the resultant silicone elastomer exhibited high adhesion to metal and nonmetal and showed stable adhesion in harsh environments, such as under acidic (pH 1) and alkaline (pH 12) environments, salt water, petroleum ether, water, etc. Furthermore, it was applied as a shatter-proof protective layer and a rust-proof coating, proving its significant potential in intelligent residential system applications.


Assuntos
Elastômeros , Elastômeros de Silicone , Temperatura , Água
16.
Luminescence ; 36(4): 928-936, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33484086

RESUMO

By designing an orthogonal experiment with four factors and three levels, (Na0.5 Bi0.495 Nd0.005 )TiO3 (NBT-Nd) nanopowders were prepared using a hydrothermal method under different conditions to determine the optimum hydrothermal synthesis conditions. The synthesized NBT-Nd nanopowders were characterized using X-ray diffraction measurement, ultraviolet-visible spectra, photoluminescence spectra, and transmission electron microscopy to evaluate the orthogonal experimental conditions. The results showed that NBT-Nd powders with excellent crystalline and luminescence properties could be obtained at 160°C, with a 16 h reaction time, 8 mol·L-1 NaOH, and with 0.4489 g C19 H42 BrN. The optimized hydrothermal method-prepared NBT-Nd powder has a rather pure rhombohedral perovskite structure at room temperature, and exhibits an aggregated polycrystalline structure containing nanotubes and nano-sized particles. Under excitation of 247 nm light, strong fluorescence emissions are excited at 423 nm and 441 nm in the NBT-Nd powder that were generated by transitions of Nd3+ from 2 D5/2 to 4 I9/2 and from 4 G11/2 to 4 I9/2 , respectively. Through CIE1931 chromaticity calculation of the emission peaks, the NBT-Nd powder was shown to emit indigo blue fluorescent light.


Assuntos
Luz , Luminescência , Microscopia Eletrônica de Transmissão , Pós , Difração de Raios X
17.
Nano Lett ; 19(10): 7181-7190, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479275

RESUMO

Perovskite solar cells based on two-dimensional/three-dimensional (2D/3D) hierarchical structure have attracted significant attention in recent years due to their promising photovoltaic performance and stability. However, obtaining a detailed understanding of interfacial mechanism at the 2D/3D heterojunction, for example, the ligand-chemistry-dependent nature of the 2D/3D heterojunction and its influence on charge collection and the final photovoltaic outcome, is not yet fully developed. Here we demonstrate the underlying 3D phase templates growth of quantum wells (QWs) within a 2D capping layer, which is further influenced by the fluorination of spacers and compositional engineering in terms of thickness distribution and orientation. Better QW alignment and faster dynamics of charge transfer at the 2D/3D heterojunction result in higher charge mobility and lower charge recombination loss, largely explaining the significant improvements in charge collection and open-circuit voltage (VOC) in complete solar cells. As a result, 2D/3D solar cells with a power-conversion efficiency of 21.15% were achieved, significantly higher than the 3D counterpart (19.02%). This work provides key missing information on how interfacial engineering influences the desirable electronic properties of the 2D/3D hierarchical films and device performance via ligand chemistry and compositional engineering in the QW layer.

18.
Small ; 15(33): e1902878, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250965

RESUMO

Wearable devices are mainly based on plastic substrates, such as polyethylene terephthalate and polyethylene naphthalate, which causes environmental pollution after use due to the long decomposition periods. This work reports on the fabrication of a biodegradable and biocompatible transparent conductive electrode derived from bamboo for flexible perovskite solar cells. The conductive bioelectrode exhibits extremely flexible and light-weight properties. After bending 3000 times at a 4 mm curvature radius or even undergoing a crumpling test, it still shows excellent electrical performance and negligible decay. The performance of the bamboo-based bioelectrode perovskite solar cell exhibits a record power conversion efficiency (PCE) of 11.68%, showing the highest efficiency among all reported biomass-based perovskite solar cells. It is remarkable that this flexible device has a highly bendable mechanical stability, maintaining over 70% of its original PCE during 1000 bending cycles at a 4 mm curvature radius. This work paves the way for perovskite solar cells toward comfortable and environmentally friendly wearable devices.

19.
J Nanosci Nanotechnol ; 18(7): 4814-4821, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442661

RESUMO

Nickel oxide (NiOx) films were deposited onto ITO-coated glass at room temperature by DC magnetron sputtering in Ar/O2 mixing gas. The effect of O2 concentration on structure, morphology, electrochemical and electrochromic properties of NiOx films was systematically investigated. X-ray diffraction results showed NiOx films had the polycrystalline structure. NiOx films deposited at low O2 concentration had the preferred (200) peak. On the other hand, the films exhibited the strong (111) peak at high O2 concentration. Small roughness and grain size of NiOx film deposited at 15% O2 concentration were observed by atomic force microscope and scanning electron microscope results, and small crystallite size was obtained from the XRD data which leads to the good cyclic durability. The large transmittance modulation, high color efficiency and fast coloring/bleaching response time make NiOx films suitable to be applied as an anodic coloring material complemented with WO3 electrochromic window.

20.
J Nanosci Nanotechnol ; 18(6): 4222-4229, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442766

RESUMO

Nickel oxide (NiOx) films were deposited onto ITO-coated glass at room temperature by DC magnetron sputtering and the electrochromic properties were investigated. The effects of film thickness on structure, morphology, electrochemical and electrochromic properties of NiOx films were systematically studied. X-ray diffraction and scanning electron microscopy results indicate NiOx films have the polycrystalline structure and the crystallinity improves with the increase of thickness. In atomic force microscopy analysis, the surface roughness of NiOx films increases as the thickness increases and large roughness is obtained in the films of more than 300 nm. The electrochemical properties were measured by using conventional three-electrode configuration in 1 M LiClO4-PC electrolyte and all the samples show good cyclic stability. A transmittance modulation of 62% between colored and bleached state at 550 nm wavelength is obtained for 500 nm thick film and the high color efficiencies of more than 62 cm2C-1 are obtained in NiOx films. However, coloring and bleaching response times increase with the increase of thickness because of the larger depth of charge insertion/extraction. The results confirm that magnetron sputtering technology provides a feasibility for electrochromic devices with excellent electrochromic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA