Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(D1): D1128-D1136, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30053270

RESUMO

Single-nucleotide variation and gene expression of disease samples represent important resources for biomarker discovery. Many databases have been built to host and make available such data to the community, but these databases are frequently limited in scope and/or content. BioMuta, a database of cancer-associated single-nucleotide variations, and BioXpress, a database of cancer-associated differentially expressed genes and microRNAs, differ from other disease-associated variation and expression databases primarily through the aggregation of data across many studies into a single source with a unified representation and annotation of functional attributes. Early versions of these resources were initiated by pilot funding for specific research applications, but newly awarded funds have enabled hardening of these databases to production-level quality and will allow for sustained development of these resources for the next few years. Because both resources were developed using a similar methodology of integration, curation, unification, and annotation, we present BioMuta and BioXpress as allied databases that will facilitate a more comprehensive view of gene associations in cancer. BioMuta and BioXpress are hosted on the High-performance Integrated Virtual Environment (HIVE) server at the George Washington University at https://hive.biochemistry.gwu.edu/biomuta and https://hive.biochemistry.gwu.edu/bioxpress, respectively.


Assuntos
Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Bases de Conhecimento , Mutação , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs , Interface Usuário-Computador
2.
JCO Clin Cancer Inform ; 4: 210-220, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32142370

RESUMO

PURPOSE: The purpose of OncoMX1 knowledgebase development was to integrate cancer biomarker and relevant data types into a meta-portal, enabling the research of cancer biomarkers side by side with other pertinent multidimensional data types. METHODS: Cancer mutation, cancer differential expression, cancer expression specificity, healthy gene expression from human and mouse, literature mining for cancer mutation and cancer expression, and biomarker data were integrated, unified by relevant biomedical ontologies, and subjected to rule-based automated quality control before ingestion into the database. RESULTS: OncoMX provides integrated data encompassing more than 1,000 unique biomarker entries (939 from the Early Detection Research Network [EDRN] and 96 from the US Food and Drug Administration) mapped to 20,576 genes that have either mutation or differential expression in cancer. Sentences reporting mutation or differential expression in cancer were extracted from more than 40,000 publications, and healthy gene expression data with samples mapped to organs are available for both human genes and their mouse orthologs. CONCLUSION: OncoMX has prioritized user feedback as a means of guiding development priorities. By mapping to and integrating data from several cancer genomics resources, it is hoped that OncoMX will foster a dynamic engagement between bioinformaticians and cancer biomarker researchers. This engagement should culminate in a community resource that substantially improves the ability and efficiency of exploring cancer biomarker data and related multidimensional data.


Assuntos
Biomarcadores Tumorais/análise , Biologia Computacional/métodos , Mineração de Dados/métodos , Bases de Dados Genéticas/normas , Bases de Conhecimento , Neoplasias/diagnóstico , Software , Animais , Ontologias Biológicas , Humanos , Camundongos , Neoplasias/terapia , Interface Usuário-Computador
3.
Sci Rep ; 8(1): 4322, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531238

RESUMO

Despite availability of sequence site-specific information resulting from years of sequencing and sequence feature curation, there have been few efforts to integrate and annotate this information. In this study, we update the number of human N-linked glycosylation sequons (NLGs), and we investigate cancer-relatedness of glycosylation-impacting somatic nonsynonymous single-nucleotide variation (nsSNV) by mapping human NLGs to cancer variation data and reporting the expected loss or gain of glycosylation sequon. We find 75.8% of all human proteins have at least one NLG for a total of 59,341 unique NLGs (includes predicted and experimentally validated). Only 27.4% of all NLGs are experimentally validated sites on 4,412 glycoproteins. With respect to cancer, 8,895 somatic-only nsSNVs abolish NLGs in 5,204 proteins and 12,939 somatic-only nsSNVs create NLGs in 7,356 proteins in cancer samples. nsSNVs causing loss of 24 NLGs on 23 glycoproteins and nsSNVs creating 41 NLGs on 40 glycoproteins are identified in three or more cancers. Of all identified cancer somatic variants causing potential loss or gain of glycosylation, only 36 have previously known disease associations. Although this work is computational, it builds on existing genomics and glycobiology research to promote identification and rank potential cancer nsSNV biomarkers for experimental validation.


Assuntos
Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Proteoma/genética , Genoma Humano , Genômica/métodos , Glicoproteínas/genética , Glicosilação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA