Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anim Reprod ; 20(2): e20230076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700908

RESUMO

Paternal programming is the concept that the environmental signals from the sire's experiences leading up to mating can alter semen and ultimately affect the phenotype of resulting offspring. Potential mechanisms carrying the paternal effects to offspring can be associated with epigenetic signatures (DNA methylation, histone modification and non-coding RNAs), oxidative stress, cytokines, and the seminal microbiome. Several opportunities exist for sperm/semen to be influenced during development; these opportunities are within the testicle, the epididymis, or accessory sex glands. Epigenetic signatures of sperm can be impacted during the pre-natal and pre-pubertal periods, during sexual maturity and with advancing sire age. Sperm are susceptible to alterations as dictated by their developmental stage at the time of the perturbation, and sperm and seminal plasma likely have both dependent and independent effects on offspring. Research using rodent models has revealed that many factors including over/under nutrition, dietary fat, protein, and ingredient composition (e.g., macro- or micronutrients), stress, exercise, and exposure to drugs, alcohol, and endocrine disruptors all elicit paternal programming responses that are evident in offspring phenotype. Research using livestock species has also revealed that sire age, fertility level, plane of nutrition, and heat stress can induce alterations in the epigenetic, oxidative stress, cytokine, and microbiome profiles of sperm and/or seminal plasma. In addition, recent findings in pigs, sheep, and cattle have indicated programming effects in blastocysts post-fertilization with some continuing into post-natal life of the offspring. Our research group is focused on understanding the effects of common management scenarios of plane of nutrition and growth rates in bulls and rams on mechanisms resulting in paternal programming and subsequent offspring outcomes. Understanding the implication of paternal programming is imperative as short-term feeding and management decisions have the potential to impact productivity and profitability of our herds for generations to come.

2.
Sci Rep ; 10(1): 10204, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576896

RESUMO

Differences between the expression of the two alleles of a gene are known as allele-specific expression (ASE), a common event in the transcriptome of mammals. Despite ASE being a source of phenotypic variation, its occurrence and effects on genetic prediction of economically relevant traits are still unexplored in bovines. Furthermore, as ASE events are likely driven by cis-regulatory mutations, scanning them throughout the bovine genome represents a significant step to elucidate the mechanisms underlying gene expression regulation. To address this question in a Bos indicus population, we built the ASE profile of the skeletal muscle tissue of 190 Nelore steers, using RNA sequencing data and SNPs genotypes from the Illumina BovineHD BeadChip (770 K bp). After quality control, 820 SNPs showed at least one sample with ASE. These SNPs were widespread among all autosomal chromosomes, being 32.01% found in 3'UTR and 31.41% in coding regions. We observed a considerable variation of ASE profile among individuals, which highlighted the need for biological replicates in ASE studies. Functional analysis revealed that ASE genes play critical biological functions in the development and maintenance of muscle tissue. Additionally, some of these genes were previously reported as associated with beef production and quality traits in livestock, thus indicating a possible source of bias on genomic predictions for these traits.


Assuntos
Bovinos/genética , Regulação da Expressão Gênica/genética , Músculo Esquelético/fisiologia , Alelos , Animais , Genoma/genética , Genômica/métodos , Genótipo , Carne , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Análise de Sequência de RNA , Transcriptoma/genética
3.
Sci Rep ; 10(1): 8436, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439843

RESUMO

Mineral contents in bovine muscle can affect meat quality, growth, health, and reproductive traits. To better understand the genetic basis of this phenotype in Nelore (Bos indicus) cattle, we analysed genome-wide mRNA and miRNA expression data from 114 muscle samples. The analysis implemented a new application for two complementary algorithms: the partial correlation and information theory (PCIT) and the regulatory impact factor (RIF), in which we included the estimated genomic breeding values (GEBVs) for the phenotypes additionally to the expression levels, originally proposed for these methods. We used PCIT to determine putative regulatory relationships based on significant associations between gene expression and GEBVs for each mineral amount. Then, RIF was adopted to determine the regulatory impact of genes and miRNAs expression over the GEBVs for the mineral amounts. We also investigated over-represented pathways, as well as pieces of evidences from previous studies carried in the same population and in the literature, to determine regulatory genes for the mineral amounts. For example, NOX1 expression level was positively correlated to Zinc and has been described as Zinc-regulated in humans. Based on our approach, we were able to identify genes, miRNAs and pathways not yet described as underlying mineral amount. The results support the hypothesis that extracellular matrix interactions are the core regulator of mineral amount in muscle cells. Putative regulators described here add information to this hypothesis, expanding the knowledge on molecular relationships between gene expression and minerals.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Minerais/metabolismo , Músculo Esquelético/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Animais , Bovinos , Genoma , MicroRNAs/genética , RNA Mensageiro/genética
4.
PLoS One ; 11(8): e0161160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27532424

RESUMO

Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV), were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05) found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology.


Assuntos
Ferro/análise , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Músculo Esquelético/metabolismo , Carne Vermelha/análise , Animais , Bovinos , Cobre/análise , Ácido Graxo Sintase Tipo I/genética , Proteínas de Ligação a Ácido Graxo/genética , Expressão Gênica , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Manganês/análise , RNA/biossíntese , Transdução de Sinais , Fatores de Transcrição/genética , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA