Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463298

RESUMO

Human amylin is a 37-residue peptide hormone (hA1-37) secreted by ß-cells of the pancreas and, along with insulin, is directly associated with type 2 diabetes mellitus (T2DM). Amyloid deposits within the islets of the pancreas represent a hallmark of T2DM. Additionally, amylin aggregates have been found in blood vessels and/or brain of patients with Alzheimer's disease, alone or co-deposited with ß-amyloid. The purpose of this study was to investigate the neuroprotective potential of human amylin in the context of endothelial-neuronal "cross-talk". We initially performed dose-response experiments to examine cellular toxicity (quantified by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay) of different hA17⁻29 concentrations in endothelial cells (RBE4). In the culture medium of these cells, we also measured heat shock protein B5 (HspB5) levels by ELISA, finding that even a sub-toxic concentration of hA17⁻29 (3 µM) produced an increase of HspB5. Using a cell medium of untreated and RBE4 challenged for 48 h with a sub-toxic concentration of hA17⁻29, we determined the potential beneficial effect of their addition to the medium of neuroblastoma SH-SY5Y cells. These cells were subsequently incubated for 48 h with a toxic concentration of hA17⁻29 (20 µM). We found a complete inhibition of hA17⁻29 toxicity, potentially related to the presence in the conditioned medium not only of HspB5, but also of vascular endothelial growth factor (VEGF). Pre-treating SH-SY5Y cells with the anti-Flk1 antibody, blocking the VEGF receptor 2 (VEGFR2), significantly decreased the protective effects of the conditioned RBE4 medium. These data, obtained by indirectly measuring VEGF activity, were strongly corroborated by the direct measurement of VEGF levels in conditioned RBE4 media as detected by ELISA. Altogether, these findings highlighted a novel role of sub-toxic concentrations of human amylin in promoting the secretion of proteic factors by endothelial cells (HspB5 and VEGF) that support the survival and proliferation of neuron-like cells.


Assuntos
Cristalinas/metabolismo , Células Endoteliais/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas Associadas aos Microtúbulos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Amiloide/toxicidade , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais/efeitos dos fármacos , Fluorescência , Humanos , Agregados Proteicos , Ratos , Fatores de Tempo
2.
Mol Cell Biochem ; 425(1-2): 85-93, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27804051

RESUMO

Human amylin (hA1-37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic ß-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17-29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17-29 ß-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17-29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17-29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17-29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17-29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (-44% of cell viability, p < 0.01 compared to controls). Anti-RAGE or anti-p75-NGFR antibodies almost abolished cell toxicity of hA17-29 aggregates. These results indicate that copper(II) influences the aggregation process and hA17-29 toxicities are especially attributable to oligomeric aggregates. hA17-29 aggregate toxicity seems to be mediated by RAGE and p75-NGFR receptors which might be potential targets for new drugs in T2DM treatment.


Assuntos
Amiloide/toxicidade , Cobre/toxicidade , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas do Tecido Nervoso/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas do Tecido Nervoso/genética , Ratos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptores de Fator de Crescimento Neural/genética
3.
J Inorg Biochem ; 113: 15-24, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22687490

RESUMO

The peptide sequence PHSRN is the second cell binding site of the human fibronectin protein, a glycoprotein which plays a critical adhesive role during development, tissue repair and angiogenesis. The copper(II) complexes with the peptide fragment PHSRN were characterized by potentiometric and UV-visible, CD, EPR spectroscopic methods. Thermodynamic and spectroscopic evidences indicate that at physiological pH, only one copper(II) complex species, [CuLH(-2)], is present and the metal ion is bound to one imidazole and two amide nitrogen atoms (N(Im), 2N(-)) in a tetrahedral distorted square planar coordination. Two new ß-cyclodextrin-ethylendiamino derivatives with the PHSRN covalently attached were synthesized as multitargeting molecules, able to have a site-specific recognition sequence, to interact with copper(II) ions and to be a potential carrier of hydrophobic drugs. Copper(II) complexes with these ß-cyclodextrin derivatives were characterized by means of potentiometric and spectroscopic techniques. The comparison of the experimental parameters determined at different pH values with those obtained for the parent peptide complex species, shows that at physiological pH the ethylendiamino-ß-CD moiety does not influence the peptide interaction with copper ions and the ß-CD hydrophobic cavity is not blocked, being available to host hydrophobic drugs such as naproxen.


Assuntos
Complexos de Coordenação/química , Cobre/química , Fibronectinas/química , Oligopeptídeos/química , beta-Ciclodextrinas/química , Sítios de Ligação , Cátions Bivalentes , Dicroísmo Circular , Portadores de Fármacos/química , Espectroscopia de Ressonância de Spin Eletrônica , Etilenodiaminas/química , Humanos , Concentração de Íons de Hidrogênio , Integrinas , Ligantes , Espectroscopia de Ressonância Magnética , Naproxeno/química , Ligação Proteica , Estrutura Terciária de Proteína , Espectrofotometria Ultravioleta , Termodinâmica
4.
J Colloid Interface Sci ; 341(2): 232-9, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19857872

RESUMO

The Pro-His-Ser-Arg-Asn (PHSRN) sequence in fibronectin is a second cell-binding site that synergistically affects Arg-Gly-Asp (RGD). The PHSRN peptide also induces cell invasion and accelerates wound healing. We report on the surface immobilization of PHSRN by spontaneous adsorption on polysiloxane thin films which have different surface free energy characteristics. Low-surface energy (hydrophobic) polysiloxane and the corresponding high-surface energy (hydrophilic) surfaces obtained by UV-ozone treatments were used as adsorbing substrates. The peptide adsorption process was investigated by quartz crystal microbalance with dissipation monitoring and atomic force microscopy. Both adsorption kinetics and peptide rearrangement dynamics at the solid interface were significantly different on the surface-modified films compared to the untreated ones. Fibroblast cells cultures at short times and in a simplified environment, i.e., a medium-free solution, were prepared to distinguish interaction events at the interface between cell membrane and surface-immobilized peptide for the two cases. It turned out that the cell-adhesive effect of immobilized PHSRN was different for hydrophobic compared to hydrophilic ones. Early signatures of cell spreading were only observed on the hydrophilic substrates. These effects are explained in terms of different spatial arrangements of PHSRN molecules immobilized on the two types of surfaces.


Assuntos
Adesão Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibronectinas/química , Fragmentos de Peptídeos/química , Polímeros/química , Adsorção , Linhagem Celular , Forma Celular/efeitos dos fármacos , Tamanho Celular/efeitos dos fármacos , Dicroísmo Circular , Fibronectinas/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia , Microscopia de Força Atômica , Ozônio/química , Fragmentos de Peptídeos/farmacologia , Espectroscopia Fotoeletrônica , Polímeros/efeitos da radiação , Conformação Proteica , Siloxanas/química , Propriedades de Superfície , Termodinâmica , Alicerces Teciduais/química , Raios Ultravioleta , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA