Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34737229

RESUMO

Basal-like breast cancer (BLBC) is the most aggressive subtype of breast tumors with poor prognosis and limited molecular-targeted therapy options. We show that BLBC cells have a high Cys demand and reprogrammed Cys metabolism. Patient-derived BLBC tumors from four different cohorts exhibited elevated expression of the transsulfuration enzyme cystathione ß-synthetase (CBS). CBS silencing (shCBS) made BLBC cells less invasive, proliferate slower, more vulnerable to oxidative stress and cystine (CySSCy) deprivation, prone to ferroptosis, and less responsive to HIF1-α activation under hypoxia. shCBS xenograft tumors grew slower than controls and exhibited impaired angiogenesis and larger necrotic areas. Sulfur metabolite profiling suggested that realigned sulfide/persulfide-inducing functions of CBS are important in BLBC tumor progression. Supporting this, the exclusion of serine, a substrate of CBS for producing Cys but not for producing sulfide/persulfide, did not exacerbate CySSCy deprivation-induced ferroptosis in shCBS BLBC cells. Impaired Tyr phosphorylation was detected in shCBS cells and xenografts, likely due to persulfidation-inhibited phosphatase functions. Overexpression of cystathione γ-lyase (CSE), which can also contribute to cellular sulfide/persulfide production, compensated for the loss of CBS activities, and treatment of shCBS xenografts with a CSE inhibitor further blocked tumor growth. Glutathione and protein-Cys levels were not diminished in shCBS cells or xenografts, but levels of Cys persulfidation and the persulfide-catabolizing enzyme ETHE1 were suppressed. Finally, expression of enzymes of the oxidizing Cys catabolism pathway was diminished, but expression of the persulfide-producing CARS2 was elevated in human BLBC tumors. Hence, the persulfide-producing pathways are major targetable determinants of BLBC pathology that could be therapeutically exploited.


Assuntos
Cistationina beta-Sintase/metabolismo , Cisteína/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Animais , Estudos de Coortes , Progressão da Doença , Feminino , Ferroptose , Humanos , Camundongos SCID , Neovascularização Patológica , Estresse Oxidativo , Sulfetos/metabolismo
2.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299206

RESUMO

Despite the intensive investigation of the molecular mechanism of skeletal muscle hypertrophy, the underlying signaling processes are not completely understood. Therefore, we used an overload model, in which the main synergist muscles (gastrocnemius, soleus) of the plantaris muscle were surgically removed, to cause a significant overload in the remaining plantaris muscle of 8-month-old Wistar male rats. SIRT1-associated pro-anabolic, pro-catabolic molecular signaling pathways, NAD and H2S levels of this overload-induced hypertrophy were studied. Fourteen days of overload resulted in a significant 43% (p < 0.01) increase in the mass of plantaris muscle compared to sham operated animals. Cystathionine-ß-synthase (CBS) activities and bioavailable H2S levels were not modified by overload. On the other hand, overload-induced hypertrophy of skeletal muscle was associated with increased SIRT1 (p < 0.01), Akt (p < 0.01), mTOR, S6 (p < 0.01) and suppressed sestrin 2 levels (p < 0.01), which are mostly responsible for anabolic signaling. Decreased FOXO1 and SIRT3 signaling (p < 0.01) suggest downregulation of protein breakdown and mitophagy. Decreased levels of NAD+, sestrin2, OGG1 (p < 0.01) indicate that the redox milieu of skeletal muscle after 14 days of overloading is reduced. The present investigation revealed novel cellular interactions that regulate anabolic and catabolic processes in the hypertrophy of skeletal muscle.


Assuntos
Cistationina beta-Sintase/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Animais , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patologia , Masculino , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuínas/antagonistas & inibidores , Sirtuínas/genética , Sirtuínas/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
3.
J Phys Chem A ; 122(25): 5503-5509, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29873496

RESUMO

The reaction-diffusion equation was used to simulate kinetic curves measured in a stopped-flow instrument in order to understand the origin of micromixing effects. The partial differential equations were solved both by numeric means and by a more analytical approach using Fourier series. A fully analytical solution was obtained for the diffusion only case (when no reaction occurs). Comparisons with the results of numerical calculations showed that very reasonable analytical approximations were obtained for the diffusion-reaction case. The simulations could readily reproduce the saturation of the pseudo-first-order rate constants with an increase in the concentration of excess reagent, a phenomenon first observed about 30 years ago. From the results, it can be concluded that further improvement of the performance of stopped-flow instruments is not possible by simply reducing the dead time; the efficiency of the mixing is the primary limiting factor.

4.
Photochem Photobiol Sci ; 15(4): 589-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26947352

RESUMO

A versatile photoreactor was built for studying homogeneous and heterogeneous photochemical reactions using fiber-optic devices. The reactor was designed to allow simultaneous photochemical initiation and online spectrophotometric monitoring of the reaction using independently controlled excitation and detection lamps. The system consists of a CCD spectrophotometer, a thermostated sample holder, two light sources, and standard 1.00 × 1.00 cm (or possibly smaller) fluorescence cuvettes, all coupled with fiber optic cables. The device can be used as a photoreactor, a diode-array spectrophotometer and also as a spectrofluorimeter. The reactor can be used in flow-through operation modes. Performance tests of the instrument are reported here with a number of known photochemical systems.

5.
Chemphyschem ; 15(16): 3614-25, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25167957

RESUMO

Mono- and dialkylated derivatives of 1-amino-5-isocyanonaphthalene (ICAN) were studied as new members of a multifunctional, easy-to-prepare fluorophore family, which showed excellent solvatochromic properties. The monoallyl derivative and the starting ICAN exhibited strong fluorescence quenching in the presence of small amounts of pyridine. The formation of a hydrogen-bonded ground-state pyridine complex was detected; however, analysis of quantum chemical calculations suggested the presence of an additional π-stacked pyridine complex. The Stern-Volmer plot of the quenching process exhibited a downward curvature and after reaching a minimum the fluorescence intensity increased back to a significant level at high pyridine concentrations. Significant fluorescence was observed even in pure pyridine. A new mechanism and a simple mathematical equation were derived to explain the downward curvature and the remaining fluorescence by the formation of a fluorescent π-stacked complex.


Assuntos
Corantes Fluorescentes/química , Naftalenos/química , Piridinas/química , Solventes/química , Alquilação , Ligação de Hidrogênio , Teoria Quântica , Espectrometria de Fluorescência
6.
Artigo em Inglês | MEDLINE | ID: mdl-38993681

RESUMO

The biological chemistry of hydrogen sulfide (H2S) with physiologically important heme proteins is in the focus of redox biology research. In this study, we investigated the interactions of lactoperoxidase (LPO) with H2S in the presence and absence of molecular dioxygen (O2) or hydrogen peroxide (H2O2). Under anaerobic conditions, native LPO forms no heme-H2S complex upon sulfide exposure. However, under aerobic conditions or in the presence of H2O2 the formation of both ferrous and ferric sulfheme (sulfLPO) derivatives was observed based on the appearances of their characteristic optical absorptions at 638 nm and 727 nm, respectively. Interestingly, we demonstrate that LPO can catalytically oxidize H2S by H2O2 via intermediate formation of relatively short-lived ferrous and ferric sulfLPO derivatives. Pilot product analyses suggested that the turnover process generates oxidized sulfide species, which include sulfate S O 4 2 - and inorganic polysulfides ( H S x - ; x = 2-5). These results indicated that H2S can serve as a non-classical LPO substrate by inducing a reversible sulfheme-like modification of the heme porphyrin ring during turnover. Furthermore, electron paramagnetic resonance data suggest that H2S can act as a scavenger of H2O2 in the presence of LPO without detectable formation of any carbon-centered protein radical species, suggesting that H2S might be capable of protecting the enzyme from radical-mediated damage. We propose possible mechanisms, which explain our results as well as contrasting observations with other heme proteins, where either no sulfheme formation was observed or the generation of sulfheme derivatives provided a dead end for enzyme functions.

7.
Redox Biol ; 73: 103222, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843767

RESUMO

BACKGROUND: Cystathionine ß-synthase (CBS)-deficient homocystinuria (HCU) is an inherited disorder of sulfur amino acid metabolism with varying severity and organ complications, and a limited knowledge about underlying pathophysiological processes. Here we aimed at getting an in-depth insight into disease mechanisms using a transgenic mouse model of HCU (I278T). METHODS: We assessed metabolic, proteomic and sphingolipidomic changes, and mitochondrial function in tissues and body fluids of I278T mice and WT controls. Furthermore, we evaluated the efficacy of methionine-restricted diet (MRD) in I278T mice. RESULTS: In WT mice, we observed a distinct tissue/body fluid compartmentalization of metabolites with up to six-orders of magnitude differences in concentrations among various organs. The I278T mice exhibited the anticipated metabolic imbalance with signs of an increased production of hydrogen sulfide and disturbed persulfidation of free aminothiols. HCU resulted in a significant dysregulation of liver proteome affecting biological oxidations, conjugation of compounds, and metabolism of amino acids, vitamins, cofactors and lipids. Liver sphingolipidomics indicated upregulation of the pro-proliferative sphingosine-1-phosphate signaling pathway. Liver mitochondrial function of HCU mice did not seem to be impaired compared to controls. MRD in I278T mice improved metabolic balance in all tissues and substantially reduced dysregulation of liver proteome. CONCLUSION: The study highlights distinct tissue compartmentalization of sulfur-related metabolites in normal mice, extensive metabolome, proteome and sphingolipidome disruptions in I278T mice, and the efficacy of MRD to alleviate some of the HCU-related biochemical abnormalities.


Assuntos
Cistationina beta-Sintase , Modelos Animais de Doenças , Homocistinúria , Fígado , Metabolômica , Camundongos Transgênicos , Proteômica , Esfingolipídeos , Animais , Camundongos , Homocistinúria/metabolismo , Homocistinúria/genética , Proteômica/métodos , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/deficiência , Cistationina beta-Sintase/genética , Fígado/metabolismo , Metabolômica/métodos , Esfingolipídeos/metabolismo , Mitocôndrias/metabolismo , Lipidômica/métodos , Proteoma/metabolismo
8.
Geroscience ; 46(5): 4275-4314, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38558215

RESUMO

Down syndrome (DS) is a genetic condition where the person is born with an extra chromosome 21. DS is associated with accelerated aging; people with DS are prone to age-related neurological conditions including an early-onset Alzheimer's disease. Using the Dp(17)3Yey/ + mice, which overexpresses a portion of mouse chromosome 17, which encodes for the transsulfuration enzyme cystathionine ß-synthase (CBS), we investigated the functional role of the CBS/hydrogen sulfide (H2S) pathway in the pathogenesis of neurobehavioral dysfunction in DS. The data demonstrate that CBS is higher in the brain of the DS mice than in the brain of wild-type mice, with primary localization in astrocytes. DS mice exhibited impaired recognition memory and spatial learning, loss of synaptosomal function, endoplasmic reticulum stress, and autophagy. Treatment of mice with aminooxyacetate, a prototypical CBS inhibitor, improved neurobehavioral function, reduced the degree of reactive gliosis in the DS brain, increased the ability of the synaptosomes to generate ATP, and reduced endoplasmic reticulum stress. H2S levels in the brain of DS mice were higher than in wild-type mice, but, unexpectedly, protein persulfidation was decreased. Many of the above alterations were more pronounced in the female DS mice. There was a significant dysregulation of metabolism in the brain of DS mice, which affected amino acid, carbohydrate, lipid, endocannabinoid, and nucleotide metabolites; some of these alterations were reversed by treatment of the mice with the CBS inhibitor. Thus, the CBS/H2S pathway contributes to the pathogenesis of neurological dysfunction in DS in the current animal model.


Assuntos
Autofagia , Cistationina beta-Sintase , Modelos Animais de Doenças , Síndrome de Down , Estresse do Retículo Endoplasmático , Sulfeto de Hidrogênio , Regulação para Cima , Animais , Cistationina beta-Sintase/metabolismo , Cistationina beta-Sintase/genética , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatologia , Síndrome de Down/genética , Sulfeto de Hidrogênio/metabolismo , Camundongos , Estresse do Retículo Endoplasmático/fisiologia , Encéfalo/metabolismo , Ácido Amino-Oxiacético/farmacologia , Comportamento Animal , Masculino , Feminino , Sinapses/metabolismo
9.
Redox Biol ; 73: 103192, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38776754

RESUMO

BACKGROUND: In animals, dietary sulfur amino acid restriction (SAAR) improves metabolic health, possibly mediated by altering sulfur amino acid metabolism and enhanced anti-obesogenic processes in adipose tissue. AIM: To assess the effects of SAAR over time on the plasma and urine SAA-related metabolites (sulfurome) in humans with overweight and obesity, and explore whether such changes were associated with body weight, body fat and adipose tissue gene expression. METHODS: Fifty-nine subjects were randomly allocated to SAAR (∼2 g SAA, n = 31) or a control diet (∼5.6 g SAA, n = 28) consisting of plant-based whole-foods and supplemented with capsules to titrate contents of SAA. Sulfurome metabolites in plasma and urine at baseline, 4 and 8 weeks were measured using HPLC and LC-MS/MS. mRNA-sequencing of subcutaneous white adipose tissue (scWAT) was performed to assess changes in gene expression. Data were analyzed with mixed model regression. Principal component analyses (PCA) were performed on the sulfurome data to identify potential signatures characterizing the response to SAAR. RESULTS: SAAR led to marked decrease of the main urinary excretion product sulfate (p < 0.001) and plasma and/or 24-h urine concentrations of cystathionine, sulfite, thiosulfate, H2S, hypotaurine and taurine. PCA revealed a distinct metabolic signature related to decreased transsulfuration and H2S catabolism that predicted greater weight loss and android fat mass loss in SAAR vs. controls (all pinteraction < 0.05). This signature correlated positively with scWAT expression of genes in the tricarboxylic acid cycle, electron transport and ß-oxidation (FDR = 0.02). CONCLUSION: SAAR leads to distinct alterations of the plasma and urine sulfurome in humans, and predicted increased loss of weight and android fat mass, and adipose tissue lipolytic gene expression in scWAT. Our data suggest that SAA are linked to obesogenic processes and that SAAR may be useful for obesity and related disorders. TRIAL IDENTIFIER: https://clinicaltrials.gov/study/NCT04701346.


Assuntos
Tecido Adiposo , Aminoácidos Sulfúricos , Obesidade , Sobrepeso , Humanos , Obesidade/metabolismo , Obesidade/genética , Masculino , Feminino , Sobrepeso/metabolismo , Sobrepeso/genética , Adulto , Pessoa de Meia-Idade , Tecido Adiposo/metabolismo , Aminoácidos Sulfúricos/metabolismo , Aminoácidos Sulfúricos/sangue , Metaboloma , Regulação da Expressão Gênica
10.
Curr Opin Chem Biol ; 76: 102368, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37473483

RESUMO

Per- and polysulfides are sulfane sulfur species produced inside living cells, in organisms as diverse as bacteria, plants and humans, but their biological roles remain to be fully understood. Unfortunately, due to their reactivity, per- and polysulfides are easily altered, interconverted or lost during the processing and analysis of biological material. Thus, all current analytical methods make use of alkylating agents, to quench reactivity of hydropersulfides and hydropolysulfides and also to prevent free thiols from attacking sulfur chains in hydropolysulfides and dialkyl polysulfides. However, recent findings reveal that alkylating agents can also destroy per- and polysulfides, to varying degrees, depending on the choice of alkylating agent. Here, we discuss the challenges associated with the alkylation of per- and polysulfides, the single most important step for their preservation and detection in biological samples.


Assuntos
Alquilantes , Sulfetos , Humanos , Sulfetos/química , Enxofre/química , Compostos de Sulfidrila
11.
Redox Biol ; 60: 102629, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36780769

RESUMO

Hydrogen sulfide (H2S) was previously revealed to inhibit osteoblastic differentiation of valvular interstitial cells (VICs), a pathological feature in calcific aortic valve disease (CAVD). This study aimed to explore the metabolic control of H2S levels in human aortic valves. Lower levels of bioavailable H2S and higher levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were detected in aortic valves of CAVD patients compared to healthy individuals, accompanied by higher expression of cystathionine γ-lyase (CSE) and same expression of cystathionine ß-synthase (CBS). Increased biogenesis of H2S by CSE was found in the aortic valves of CAVD patients which is supported by increased production of lanthionine. In accordance, healthy human aortic VICs mimic human pathology under calcifying conditions, as elevated CSE expression is associated with low levels of H2S. The expression of mitochondrial enzymes involved in H2S catabolism including sulfide quinone oxidoreductase (SQR), the key enzyme in mitochondrial H2S oxidation, persulfide dioxygenase (ETHE1), sulfite oxidase (SO) and thiosulfate sulfurtransferase (TST) were up-regulated in calcific aortic valve tissues, and a similar expression pattern was observed in response to high phosphate levels in VICs. AP39, a mitochondria-targeting H2S donor, rescued VICs from an osteoblastic phenotype switch and reduced the expression of IL-1ß and TNF-α in VICs. Both pro-inflammatory cytokines aggravated calcification and osteoblastic differentiation of VICs derived from the calcific aortic valves. In contrast, IL-1ß and TNF-α provided an early and transient inhibition of VICs calcification and osteoblastic differentiation in healthy cells and that effect was lost as H2S levels decreased. The benefit was mediated via CSE induction and H2S generation. We conclude that decreased levels of bioavailable H2S in human calcific aortic valves result from an increased H2S metabolism that facilitates the development of CAVD. CSE/H2S represent a pathway that reverses the action of calcifying stimuli.


Assuntos
Estenose da Valva Aórtica , Calcinose , Sulfeto de Hidrogênio , Humanos , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/metabolismo , Estenose da Valva Aórtica/patologia , Sulfeto de Hidrogênio/metabolismo , Calcinose/metabolismo , Calcinose/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo
12.
Sci Rep ; 13(1): 16813, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798377

RESUMO

Various organosulfur compounds, such as dimethyl trisulfide (DMTS), display anti-inflammatory properties. We aimed to examine the effects of DMTS on acute pancreatitis (AP) and its mechanism of action in both in vivo and in vitro studies. AP was induced in FVB/n mice or Wistar rats by caerulein, ethanol-palmitoleic acid, or L-ornithine-HCl. DMTS treatments were administered subcutaneously. AP severity was assessed by pancreatic histological scoring, pancreatic water content, and myeloperoxidase activity measurements. The behaviour of animals was followed. Pancreatic heat shock protein 72 (HSP72) expression, sulfide, and protein persulfidation were measured. In vitro acinar viability, intracellular Ca2+ concentration, and reactive oxygen species production were determined. DMTS dose-dependently decreased the severity of AP. It declined the pancreatic infiltration of leukocytes and cellular damage in mice. DMTS upregulated the HSP72 expression during AP and elevated serum sulfide and low molecular weight persulfide levels. DMTS exhibited cytoprotection against hydrogen peroxide and AP-inducing agents. It has antioxidant properties and modulates physiological but not pathophysiological Ca2+ signalling. Generally, DMTS ameliorated AP severity and protected pancreatic acinar cells. Our findings indicate that DMTS is a sulfur donor with anti-inflammatory and antioxidant effects, and organosulfur compounds require further investigation into this potentially lethal disease.


Assuntos
Pancreatite , Ratos , Camundongos , Animais , Pancreatite/patologia , Ratos Wistar , Doença Aguda , Pâncreas/metabolismo , Sulfetos/farmacologia , Sulfetos/uso terapêutico , Sulfetos/metabolismo , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Ceruletídeo/farmacologia
13.
Redox Biol ; 57: 102505, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36279629

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of all cancer types with a constant rise in global incidence. Therefore, better understanding of PDAC biology, in order to design more efficient diagnostic and treatment modalities, is a priority. Here we found that the expression levels of cystathionine ß-synthase (CBS), a transsulfuration enzyme, is markedly elevated in metastatic PDAC cells compared to cell lines isolated from non-metastatic primary tumors. On human immunohistochemical samples from PDAC patients we also found higher CBS staining in cancerous ductal cells compared to in non-tumor tissue, which was further elevated in the lymph node metastasis of the same patients. In mice, orthotopically injected CBS-silenced T3M4 cells induced fewer liver metastases compared to control cells indicating important roles for CBS in PDAC cancer cell invasion and malignant transformation. Wound healing and colony formation assays in cell culture confirmed that CBS-deficient metastatic T3M4 and non-metastatic BxPC3 primary tumor cells migrate slower and have impaired anchorage-independent growth capacities compared to control T3M4 cells. CBS silencing in T3M4 cells lowered WNT5a and SNAI1 gene expression down to levels that were observed in BxPC3 cells as well as resulted in an increase in E-cadherin and a decrease in Vimentin signals in mouse tumors when injected orthotopically. These observations suggested a primary role for the epithelial to mesenchymal transformation of cancer cells in CBS-mediated tumor aggressiveness. Under normal conditions, STAT3, an upstream regulator of Wnt signaling pathways, was less phosphorylated and more oxidized in shCBS T3M4 and BxPC3 compared to control T3M4 cells, which is consistent with decreased transcriptional activity at lower CBS levels due to less protection against oxidation. Sulfur metabolome analyses suggested that this CBS-mediated protection against oxidative modifications is likely to be related to persulfide/sulfide producing activities of the enzyme rather than its canonical function to produce cystathionine for cysteine synthesis. Taken together, CBS overexpression through regulation of the EMT plays a significant role in PDAC cancer cell invasion and metastasis.

14.
Redox Biol ; 58: 102517, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306676

RESUMO

Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine ß-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis.


Assuntos
Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Cisteína , Sulfetos/metabolismo , Homeostase , Enxofre , Homocisteína
15.
Redox Biol ; 38: 101800, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271457

RESUMO

Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency are two rare genetic disorders that are caused by impairment of the mitochondrial enzyme sulfite oxidase. Sulfite oxidase is catalyzing the terminal reaction of cellular cysteine catabolism, the oxidation of sulfite to sulfate. Absence of sulfite oxidase leads to the accumulation of sulfite, which has been identified as a cellular toxin. However, the molecular pathways leading to the production of sulfite are still not completely understood. In order to identify novel treatment options for both disorders, the understanding of cellular cysteine catabolism - and its alterations upon loss of sulfite oxidase - is of utmost importance. Here we applied a new detection method of sulfite in cellular extracts to dissect the contribution of cytosolic and mitochondrial glutamate oxaloacetate transaminase (GOT) in the transformation of cysteine sulfinic acid to sulfite and pyruvate. We found that the cytosolic isoform GOT1 is primarily responsible for the production of sulfite. Moreover, loss of sulfite oxidase activity results in the accumulation of sulfite, H2S and persulfidated cysteine and glutathione, which is consistent with an increase of SQR protein levels. Surprisingly, none of the known H2S-producing pathways were found to be upregulated under conditions of sulfite toxicity suggesting an alternative route of sulfite-induced shift from oxidative to H2S dependent cysteine catabolism.


Assuntos
Sulfito Oxidase , Sulfitos , Glutamatos , Oxaloacetatos , Sulfito Oxidase/genética , Transaminases/genética
16.
Front Cardiovasc Med ; 8: 750926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34760947

RESUMO

Objective: Hydrogen sulfide (H2S) is a gaseous signaling molecule and redox factor important for cardiovascular function. Deficiencies in its production or bioavailability are implicated in atherosclerotic disease. However, it is unknown if circulating H2S levels differ between vasculopaths and healthy individuals, and if so, whether H2S measurements can be used to predict surgical outcomes. Here, we examined: (1) Plasma H2S levels in patients undergoing vascular surgery and compared these to healthy controls, and (2) the association between H2S levels and mortality in a cohort of patients undergoing surgical revascularization. Methods: One hundred and fifteen patients undergoing carotid endarterectomy, open lower extremity revascularization or lower leg amputation were enrolled at a single institution. Peripheral blood was also collected from a matched control cohort of 20 patients without peripheral or coronary artery disease. Plasma H2S production capacity and sulfide concentration were measured using the lead acetate and monobromobimane methods, respectively. Results: Plasma H2S production capacity and plasma sulfide concentrations were reduced in patients with PAD (p < 0.001, p = 0.013, respectively). Patients that underwent surgical revascularization were divided into high vs. low H2S production capacity groups by median split. Patients in the low H2S production group had increased probability of mortality (p = 0.003). This association was robust to correction for potentially confounding variables using Cox proportional hazard models. Conclusion: Circulating H2S levels were lower in patients with atherosclerotic disease. Patients undergoing surgical revascularization with lower H2S production capacity, but not sulfide concentrations, had increased probability of mortality within 36 months post-surgery. This work provides insight on the role H2S plays as a diagnostic and potential therapeutic for cardiovascular disease.

17.
Sci Adv ; 7(17)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883133

RESUMO

The recent report by Fan et al alleged that the ProPerDP method is inadequate for the detection of protein persulfidation. Upon careful evaluation of their work, we conclude that the claim made by Fan et al is not supported by their data, rather founded in methodological shortcomings. It is understood that the ProPerDP method generates a mixture of cysteine-containing and non-cysteine-containing peptides. Instead, Fan et al suggested that the detection of non-cysteine-containing peptides indicates nonspecific alkylation at noncysteine residues. However, if true, then such peptides would not be released by reduction and therefore not appear as products in the reported workflow. Moreover, the authors' biological assessment of ProPerDP using Escherichia coli mutants was based on assumptions that have not been confirmed by other methods. We conclude that Fan et al did not rigorously assess the method and that ProPerDP remains a reliable approach for analyses of protein per/polysulfidation.

18.
Br J Pharmacol ; 177(4): 769-777, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30834513

RESUMO

BACKGROUND AND PURPOSE: ATB-346 is a hydrogen sulfide (H2 S)-releasing anti-inflammatory and analgesic drug. Animal studies demonstrated negligible gastrointestinal (GI) damage despite marked inhibition of COX activity and significant analgesic and anti-inflammatory effects. In humans, ATB-346 (250 mg once daily) was found to inhibit COX to the same extent as naproxen (550 mg twice daily). EXPERIMENTAL APPROACH: Two hundred forty-four healthy volunteers completed a 2-week, double-blind study, taking either ATB-346 (250 mg once daily) or naproxen (550 mg twice daily), with upper GI ulceration being examined endoscopically. KEY RESULTS: Forty-two per cent of the subjects taking naproxen developed at least one ulcer (≥3-mm diameter), while only 3% of the subjects taking ATB-346 developed at least one ulcer. The two drugs produced comparable and substantial (>94%) suppression of COX activity. Subjects in the naproxen group developed more ulcers per subject than ATB-346-treated subjects and a greater incidence of larger ulcers (≥5-mm diameter). The incidence of dyspepsia, abdominal pain, gastro-oesophageal reflux, and nausea was lower with ATB-346 than with naproxen. Subjects treated with ATB-346 had significantly higher plasma levels of H2 S than those treated with naproxen. CONCLUSIONS AND IMPLICATIONS: This Phase 2B study provides unequivocal evidence for a marked reduction of GI toxicity of the H2 S-releasing analgesic/anti-inflammatory drug, ATB-346, as compared to the conventional dose of naproxen that produced equivalent suppression of COX. LINKED ARTICLES: This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.


Assuntos
Sulfeto de Hidrogênio , Preparações Farmacêuticas , Animais , Anti-Inflamatórios , Anti-Inflamatórios não Esteroides/efeitos adversos , Inibidores de Ciclo-Oxigenase , Método Duplo-Cego , Humanos , Naproxeno/efeitos adversos
19.
Antioxid Redox Signal ; 33(18): 1277-1294, 2020 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-32316739

RESUMO

Aims: The aim of the present study was to investigate the biochemical properties of nitrosopersulfide (SSNO-), a key intermediate of the nitric oxide (NO)/sulfide cross talk. Results: We obtained corroborating evidence that SSNO- is indeed a major product of the reaction of S-nitrosothiols with hydrogen sulfide (H2S). It was found to be relatively stable (t1/2 ∼1 h at room temperature) in aqueous solution of physiological pH, stabilized by the presence of excess sulfide and resistant toward reduction by other thiols. Furthermore, we here show that SSNO- escapes the reducing power of the NADPH-driven biological reducing machineries, the thioredoxin and glutathione reductase systems. The slow decomposition of SSNO- produces inorganic polysulfide species, which effectively induce per/polysulfidation on glutathione or protein cysteine (Cys) residues. Our data also demonstrate that, in contrast to the transient activation by inorganic polysulfides, SSNO- induces long-term potentiation of TRPA1 (transient receptor potential ankyrin 1) channels, which may be due to its propensity to generate a slow flux of polysulfide in situ. Innovation: The characterized properties of SSNO- would seem to represent unique features in cell signaling by enabling sulfur and nitrogen trafficking within the reducing environment of the cytosol, with targeted release of both NO and polysulfide equivalents. Conclusion: SSNO- is a surprisingly stable bioactive product of the chemical interaction of S-nitrosothiol species and H2S that is resistant to reduction by the thioredoxin and glutathione systems. As well as generating NO, it releases inorganic polysulfides, enabling transfer of sulfane sulfur species to peptide/protein Cys residues. The sustained activation of TRPA1 channels by SSNO- is most likely linked to all these properties.


Assuntos
Cisteína/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Sulfetos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Oxirredução , Transdução de Sinais
20.
J Phys Chem B ; 113(20): 7237-42, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19391579

RESUMO

The continuous time discrete state stochastic kinetic approach and its extension to flow-through reactors was used to study a straightforward modification of the Frank model to interpret absolute asymmetric synthesis, which is impossible using deterministic approaches. Computational methods for calculating multidimensional probability distributions and expectations for enantiomeric excess were developed. The results showed that narrow focus on the conventionally defined enantiomeric excess could lead to misleading conclusions and the yield-adjusted enantiomeric excess is often more useful. Closed systems proved to be more favorable for the formation of high enantiomeric excesses than flow-through reactors and the importance of mutual antagonism can also be questioned in the original Frank model. It was also shown that a flow-through reactor with a relatively small number of molecules predicts the behavior of much larger systems well.


Assuntos
Modelos Químicos , Cinética , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA