Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Genet ; 17(4): e1009275, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819267

RESUMO

Mammalian Hedgehog (HH) signalling pathway plays an essential role in tissue homeostasis and its deregulation is linked to rheumatological disorders. UBR5 is the mammalian homologue of the E3 ubiquitin-protein ligase Hyd, a negative regulator of the Hh-pathway in Drosophila. To investigate a possible role of UBR5 in regulation of the musculoskeletal system through modulation of mammalian HH signaling, we created a mouse model for specific loss of Ubr5 function in limb bud mesenchyme. Our findings revealed a role for UBR5 in maintaining cartilage homeostasis and suppressing metaplasia. Ubr5 loss of function resulted in progressive and dramatic articular cartilage degradation, enlarged, abnormally shaped sesamoid bones and extensive heterotopic tissue metaplasia linked to calcification of tendons and ossification of synovium. Genetic suppression of smoothened (Smo), a key mediator of HH signalling, dramatically enhanced the Ubr5 mutant phenotype. Analysis of HH signalling in both mouse and cell model systems revealed that loss of Ubr5 stimulated canonical HH-signalling while also increasing PKA activity. In addition, human osteoarthritic samples revealed similar correlations between UBR5 expression, canonical HH signalling and PKA activity markers. Our studies identified a crucial function for the Ubr5 gene in the maintenance of skeletal tissue homeostasis and an unexpected mode of regulation of the HH signalling pathway.


Assuntos
Artrite Reumatoide/genética , Proteínas de Drosophila/genética , Músculo Esquelético/metabolismo , Receptor Smoothened/genética , Ubiquitina-Proteína Ligases/genética , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Proteínas Hedgehog/genética , Homeostase/genética , Humanos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Camundongos , Músculo Esquelético/patologia , Osteogênese/genética , Transdução de Sinais/genética , Tendões/metabolismo , Tendões/patologia
2.
PLoS Genet ; 13(2): e1006438, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28207763

RESUMO

Apoptosis is an evolutionary conserved cell death mechanism, which requires activation of initiator and effector caspases. The Drosophila initiator caspase Dronc, the ortholog of mammalian Caspase-2 and Caspase-9, has an N-terminal CARD domain that recruits Dronc into the apoptosome for activation. In addition to its role in apoptosis, Dronc also has non-apoptotic functions such as compensatory proliferation. One mechanism to control the activation of Dronc is ubiquitylation. However, the mechanistic details of ubiquitylation of Dronc are less clear. For example, monomeric inactive Dronc is subject to non-degradative ubiquitylation in living cells, while ubiquitylation of active apoptosome-bound Dronc triggers its proteolytic degradation in apoptotic cells. Here, we examined the role of non-degradative ubiquitylation of Dronc in living cells in vivo, i.e. in the context of a multi-cellular organism. Our in vivo data suggest that in living cells Dronc is mono-ubiquitylated on Lys78 (K78) in its CARD domain. This ubiquitylation prevents activation of Dronc in the apoptosome and protects cells from apoptosis. Furthermore, K78 ubiquitylation plays an inhibitory role for non-apoptotic functions of Dronc. We provide evidence that not all of the non-apoptotic functions of Dronc require its catalytic activity. In conclusion, we demonstrate a mechanism whereby Dronc's apoptotic and non-apoptotic activities can be kept silenced in a non-degradative manner through a single ubiquitylation event in living cells.


Assuntos
Apoptose/genética , Caspases/genética , Proteínas de Drosophila/genética , Ubiquitinação/genética , Animais , Caspase 2/genética , Caspase 9/genética , Drosophila melanogaster/genética , Ligação Proteica , Domínios Proteicos/genética , Proteólise
3.
Mol Cell ; 40(5): 810-22, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145488

RESUMO

The intimate relationship between mediators of the ubiquitin (Ub)-signaling system and human diseases has sparked profound interest in how Ub influences cell death and survival. While the consequence of Ub attachment is intensely studied, little is known with regards to the effects of other Ub-like proteins (UBLs), and deconjugating enzymes that remove the Ub or UBL adduct. Systematic in vivo RNAi analysis identified three NEDD8-specific isopeptidases that, when knocked down, suppress apoptosis. Consistent with the notion that attachment of NEDD8 prevents cell death, genetic ablation of deneddylase 1 (DEN1) suppresses apoptosis. Unexpectedly, we find that Drosophila and human inhibitor of apoptosis (IAP) proteins can function as E3 ligases of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Finally, we demonstrate that DEN1 reverses this effect by removing the NEDD8 modification. Altogether, our findings indicate that IAPs not only modulate cellular processes via ubiquitylation but also through attachment of NEDD8, thereby extending the complexity of IAP-mediated signaling.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Interferência de RNA , Ubiquitina-Proteína Ligases/genética , Ubiquitina/metabolismo , Animais , Drosophila/metabolismo , Endopeptidases/metabolismo , Proteínas Inibidoras de Apoptose/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
J Biol Chem ; 290(20): 12585-94, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25833949

RESUMO

In this work, we identify physical and genetic interactions that implicate E3 identified by differential display (EDD) in promoting spindle assembly checkpoint (SAC) function. During mitosis, the SAC initiates a mitotic checkpoint in response to chromosomes with kinetochores unattached to spindle pole microtubules. Similar to Budding uninhibited by benzimidazoles-related 1 (BUBR1) siRNA, a bona fide SAC component, EDD siRNA abrogated G2/M accumulation in response to the mitotic destabilizing agent nocodazole. Furthermore, EDD siRNA reduced mitotic cell viability and, in nocodazole-treated cells, increased expression of the promitotic progression protein cell division cycle 20 (CDC20). Copurification studies also identified physical interactions with CDC20, BUBR1, and other components of the SAC. Taken together, these observations highlight the potential role of EDD in regulating mitotic progression and the cellular response to perturbed mitosis.


Assuntos
Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Mitose/efeitos dos fármacos , Nocodazol/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Células HEK293 , Células HeLa , Humanos , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/genética
5.
Mol Cell ; 32(4): 540-53, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19026784

RESUMO

Ubiquitin-mediated inactivation of caspases has long been postulated to contribute to the regulation of apoptosis. However, detailed mechanisms and functional consequences of caspase ubiquitylation have not been demonstrated. Here we show that the Drosophila Inhibitor of Apoptosis 1, DIAP1, blocks effector caspases by targeting them for polyubiquitylation and nonproteasomal inactivation. We demonstrate that the conjugation of ubiquitin to drICE suppresses its catalytic potential in cleaving caspase substrates. Our data suggest that ubiquitin conjugation sterically interferes with substrate entry and reduces the caspase's proteolytic velocity. Disruption of drICE ubiquitylation, either by mutation of DIAP1's E3 activity or drICE's ubiquitin-acceptor lysines, abrogates DIAP1's ability to neutralize drICE and suppress apoptosis in vivo. We also show that DIAP1 rests in an "inactive" conformation that requires caspase-mediated cleavage to subsequently ubiquitylate caspases. Taken together, our findings demonstrate that effector caspases regulate their own inhibition through a negative feedback mechanism involving DIAP1 "activation" and nondegradative polyubiquitylation.


Assuntos
Inibidores de Caspase , Ubiquitinação , Animais , Apoptose/genética , Apoptose/fisiologia , Caspases/genética , Caspases Efetoras/genética , Caspases Efetoras/metabolismo , Células Cultivadas , Drosophila/citologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Cinética , Modelos Biológicos , Peptídeo Hidrolases/metabolismo , Conformação Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
6.
Nat Cell Biol ; 7(1): 70-7, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15580265

RESUMO

Some members of the inhibitor of apoptosis (IAP) family suppress apoptosis by neutralizing caspases. The current model suggests that all caspase-regulatory IAPs function as direct enzyme inhibitors, blocking effector caspases by binding to their catalytically active pockets. Here we show that IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Whereas XIAP binds directly to the active-site pockets of effector caspases, we find that regulation of effector caspases by Drosophila IAP1 (DIAP1) requires an evolutionarily conserved IAP-binding motif (IBM) at the neo-amino terminus of the large caspase subunit. Remarkably, unlike XIAP, DIAP1-sequestered effector caspases remain catalytically active, suggesting that DIAP1 does not function as a bona fide enzyme inhibitor. Moreover, we demonstrate that the mammalian IAP c-IAP1 interacts with caspase-7 in an exclusively IBM-dependent, but active site pocket-independent, manner that is mechanistically similar to DIAP1. The importance of IBM-mediated regulation of effector-caspases in vivo is substantiated by the enhanced apoptotic potency of IBM-mutant versions of drICE, DCP-1 and caspase-7.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas/metabolismo , Transdução de Sinais/fisiologia , Motivos de Aminoácidos/fisiologia , Animais , Sítios de Ligação/fisiologia , Caspase 7 , Caspases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Proteínas Inibidoras de Apoptose , Camundongos , Mutação/genética , Células NIH 3T3 , Ligação Proteica/fisiologia , Subunidades Proteicas/metabolismo , Ubiquitina-Proteína Ligases , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X
7.
J Biol Chem ; 285(15): 11607-16, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20139076

RESUMO

We report the development and application of photoactivatable Green Cherry (G(PA)C), the first genetically encoded "continuously red-photoactivatable green" two-color probe for live cell imaging. G(PA)C is unique in that it enables real-time tracking of selected subpopulations of proteins and organelles in the cell or of cells within tissues and whole organisms, with constant reference to the entire population of the probe. Using G(PA)C-zyxin as proof of utility, we obtained new insights into the dynamic movement of the cytoskeletal protein zyxin. We show that zyxin is continuously and rapidly recruited from the cytosol into established focal adhesions. It can also move rapidly within a given focal adhesion and "hop" between adjacent focal adhesions, emphasizing the dynamic nature of proteins within these structures. The in vivo utility of G(PA)C is exemplified by tracking hemocyte movements using a versatile transgenic Drosophila model engineered to express G(PA)C in tissues and cells of interest under the control of the GAL4-inducible promoter.


Assuntos
Proteínas de Drosophila/química , Proteínas de Homeodomínio/química , Luz , Proteínas Luminescentes/análise , Microscopia/métodos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Animais , Animais Geneticamente Modificados , Adesão Celular , Movimento Celular , Cor , Drosophila melanogaster , Adesões Focais , Engenharia Genética , Hemócitos/citologia , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/química , Zixina
8.
Nat Cell Biol ; 5(5): 467-73, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12692559

RESUMO

Some members of the inhibitor of apoptosis (IAP) protein family block apoptosis by binding to and neutralizing active caspases. We recently demonstrated that a physical association between IAP and caspases alone is insufficient to regulate caspases in vivo and that an additional level of control is provided by IAP-mediated ubiquitination of both itself and the associated caspases. Here we show that Drosophila IAP 1 (DIAP1) is degraded by the 'N-end rule' pathway and that this process is indispensable for regulating apoptosis. Caspase-mediated cleavage of DIAP1 at position 20 converts the more stable pro-N-degron of DIAP1 into the highly unstable, Asn-bearing, DIAP1 N-degron of the N-end rule degradation pathway. Thus, DIAP1 represents the first known metazoan substrate of the N-end rule pathway that is targeted for degradation through its amino-terminal Asn residue. We demonstrate that the N-end rule pathway is required for regulation of apoptosis induced by Reaper and Hid expression in the Drosophila melanogaster eye. Our data suggest that DIAP1 instability, mediated through caspase activity and subsequent exposure of the N-end rule pathway, is essential for suppression of apoptosis. We suggest that DIAP1 safeguards cell viability through the coordinated mutual destruction of itself and associated active caspases.


Assuntos
Apoptose/genética , Proteínas de Drosophila/deficiência , Drosophila melanogaster/metabolismo , Anormalidades do Olho/metabolismo , Olho/metabolismo , Transdução de Sinais/genética , Sequência de Aminoácidos/fisiologia , Animais , Asparagina/metabolismo , Caspases/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Olho/citologia , Anormalidades do Olho/genética , Deleção de Genes , Proteínas Inibidoras de Apoptose , Mutação/genética , Neuropeptídeos/metabolismo , Fenótipo , Estrutura Terciária de Proteína/fisiologia
9.
Nat Cell Biol ; 4(6): 445-50, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12021771

RESUMO

Members of the Inhibitor of Apoptosis Protein (IAP) family block activation of the intrinsic cell death machinery by binding to and neutralizing the activity of pro-apoptotic caspases. In Drosophila melanogaster, the pro-apoptotic proteins Reaper (Rpr), Grim and Hid (head involution defective) all induce cell death by antagonizing the anti-apoptotic activity of Drosophila IAP1 (DIAP1), thereby liberating caspases. Here, we show that in vivo, the RING finger of DIAP1 is essential for the regulation of apoptosis induced by Rpr, Hid and Dronc. Furthermore, we show that the RING finger of DIAP1 promotes the ubiquitination of both itself and of Dronc. Disruption of the DIAP1 RING finger does not inhibit its binding to Rpr, Hid or Dronc, but completely abrogates ubiquitination of Dronc. Our data suggest that IAPs suppress apoptosis by binding to and targeting caspases for ubiquitination.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Proteínas de Drosophila/metabolismo , Ubiquitina/metabolismo , Animais , Células Cultivadas , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas Inibidoras de Apoptose , Ligases/metabolismo , Mutagênese/fisiologia , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/enzimologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Retina/citologia , Retina/enzimologia , Ubiquitina-Proteína Ligases
10.
J Dev Biol ; 4(3)2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-29615589

RESUMO

This review highlights the essential role of Hedgehog (Hh) signalling in the developmental steps of temporomandibular joint (TMJ) formation. We review evidence for intra- and potentially inter-tissue Hh signaling as well as Glioma-Associated Oncogene Homolog (GLI) dependent and independent functions. Morphogenesis and maturation of the TMJ's individual components and the general landscape of Hh signalling is also covered. Comparison of the appendicular knee and axial TMJ also reveals interesting differences and similarities in their mechanisms of development, chondrogenesis and reliance on Hh signalling.

11.
PLoS One ; 11(6): e0157079, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27299863

RESUMO

Hedgehog (Hh) signalling is a potent regulator of cell fate and function. While much is known about the events within a Hh-stimulated cell, far less is known about the regulation of Hh-ligand production. Drosophila Hyperplastic Discs (Hyd), a ubiquitin-protein ligase, represents one of the few non-transcription factors that independently regulates both hh mRNA expression and pathway activity. Using a murine embryonic stem cell system, we revealed that shRNAi of the mammalian homologue of hyd, Ubr5, effectively prevented retinoic-acid-induced Sonic hedgehog (Shh) expression. We next investigated the UBR5:Hh signalling relationship in vivo by generating and validating a mouse bearing a conditional Ubr5 loss-of-function allele. Conditionally deleting Ubr5 in the early embryonic limb-bud mesenchyme resulted in a transient decrease in Indian hedgehog ligand expression and decreased Hh pathway activity, around E13.5. Although Ubr5-deficient limbs and digits were, on average, shorter than control limbs, the effects were not statistically significant. Hence, while loss of UBR5 perturbed Hedgehog signalling in the developing limb, there were no obvious morphological defects. In summary, we report the first conditional Ubr5 mutant mouse and provide evidence for a role for UBR5 in influencing Hh signalling, but are uncertain to whether the effects on Hedgehog signaling were direct (cell autonomous) or indirect (non-cell-autonomous). Elaboration of the cellular/molecular mechanism(s) involved may help our understanding on diseases and developmental disorders associated with aberrant Hh signalling.


Assuntos
Extremidades/embriologia , Deleção de Genes , Proteínas Hedgehog/metabolismo , Mutação , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Alelos , Animais , Linhagem Celular , Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Botões de Extremidades/anormalidades , Botões de Extremidades/embriologia , Botões de Extremidades/metabolismo , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Fenótipo , Tretinoína/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
PLoS One ; 10(9): e0136760, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26334301

RESUMO

Hedgehog (Hh) morphogen signalling plays an essential role in tissue development and homeostasis. While much is known about the Hh signal transduction pathway, far less is known about the molecules that regulate the expression of the hedgehog (hh) ligand itself. Here we reveal that Shaggy (Sgg), the Drosophila melanogaster orthologue of GSK3ß, and the N-end Rule Ubiquitin-protein ligase Hyperplastic Discs (Hyd) act together to co-ordinate Hedgehog signalling through regulating hh ligand expression and Cubitus interruptus (Ci) expression. Increased hh and Ci expression within hyd mutant clones was effectively suppressed by sgg RNAi, placing sgg downstream of hyd. Functionally, sgg RNAi also rescued the adult hyd mutant head phenotype. Consistent with the genetic interactions, we found Hyd to physically interact with Sgg and Ci. Taken together we propose that Hyd and Sgg function to co-ordinate hh ligand and Ci expression, which in turn influences important developmental signalling pathways during imaginal disc development. These findings are important as tight temporal/spatial regulation of hh ligand expression underlies its important roles in animal development and tissue homeostasis. When deregulated, hh ligand family misexpression underlies numerous human diseases (e.g., colorectal, lung, pancreatic and haematological cancers) and developmental defects (e.g., cyclopia and polydactyly). In summary, our Drosophila-based findings highlight an apical role for Hyd and Sgg in initiating Hedgehog signalling, which could also be evolutionarily conserved in mammals.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Hedgehog/genética , Ubiquitina-Proteína Ligases/metabolismo , Alelos , Animais , Drosophila melanogaster , Cabeça/anormalidades , Proteínas Hedgehog/metabolismo , Ligantes , Ligação Proteica , Asas de Animais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA