Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 393, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24885658

RESUMO

BACKGROUND: Development of cancer therapeutics partially depends upon selection of appropriate animal models. Therefore, improvements to model selection are beneficial. RESULTS: Forty-nine human tumor xenografts at in vivo passages 1, 4 and 10 were subjected to cDNA microarray analysis yielding a dataset of 823 Affymetrix HG-U133 Plus 2.0 arrays. To illustrate mining strategies supporting therapeutic studies, transcript expression was determined: 1) relative to other models, 2) with successive in vivo passage, and 3) during the in vitro to in vivo transition. Ranking models according to relative transcript expression in vivo has the potential to improve initial model selection. For example, combining p53 tumor expression data with mutational status could guide selection of tumors for therapeutic studies of agents where p53 status purportedly affects efficacy (e.g., MK-1775). The utility of monitoring changes in gene expression with extended in vivo tumor passages was illustrated by focused studies of drug resistance mediators and receptor tyrosine kinases. Noteworthy observations included a significant decline in HCT-15 colon xenograft ABCB1 transporter expression and increased expression of the kinase KIT in A549 with serial passage. These trends predict sensitivity to agents such as paclitaxel (ABCB1 substrate) and imatinib (c-KIT inhibitor) would be altered with extended passage. Given that gene expression results indicated some models undergo profound changes with in vivo passage, a general metric of stability was generated so models could be ranked accordingly. Lastly, changes occurring during transition from in vitro to in vivo growth may have important consequences for therapeutic studies since targets identified in vitro could be over- or under-represented when tumor cells adapt to in vivo growth. A comprehensive list of mouse transcripts capable of cross-hybridizing with human probe sets on the HG-U133 Plus 2.0 array was generated. Removal of the murine artifacts followed by pairwise analysis of in vitro cells with respective passage 1 xenografts and GO analysis illustrates the complex interplay that each model has with the host microenvironment. CONCLUSIONS: This study provides strategies to aid selection of xenograft models for therapeutic studies. These data highlight the dynamic nature of xenograft models and emphasize the importance of maintaining passage consistency throughout experiments.


Assuntos
Perfilação da Expressão Gênica , Neoplasias/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Análise por Conglomerados , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Paclitaxel/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Metabolites ; 3(3): 658-72, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24958144

RESUMO

Global metabolomics analysis has the potential to uncover novel metabolic pathways that are differentially regulated during carcinogenesis, aiding in biomarker discovery for early diagnosis and remission monitoring. Metabolomics studies with human samples can be problematic due to high inter-individual variation; however xenografts of human cancers in mice offer a well-controlled model system. Urine was collected from a xenograft mouse model of MCF-7 breast cancer and analyzed by mass spectrometry-based metabolomics to identify metabolites associated with cancer progression. Over 10 weeks, 24 h urine was collected weekly from control mice, mice dosed with estradiol cypionate (1 mg/mL), mice inoculated with MCF-7 cells (1 × 107) and estradiol cypionate (1 mg/mL), and mice dosed with MCF-7 cells (1 × 107) only (n = 10/group). Mice that received both estradiol cypionate and MCF-7 cells developed tumors from four weeks after inoculation. Five urinary metabolites were identified that were associated with breast cancer; enterolactone glucuronide, coumaric acid sulfate, capric acid glucuronide, an unknown metabolite, and a novel mammalian metabolite, "taurosebacic acid". These metabolites revealed a correlation between tumor growth, fatty acid synthesis, and potential anti-proliferative effects of gut microbiota-metabolized food derivatives. These biomarkers may be of value for early diagnosis of cancer, monitoring of cancer therapeutics, and may also lead to future mechanistic studies.

3.
PLoS One ; 8(2): e57099, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437320

RESUMO

BACKGROUND: Cancer stem cells (CSC) are thought to be responsible for tumor maintenance and heterogeneity. Bona fide CSC purified from tumor biopsies are limited in supply and this hampers study of CSC biology. Furthermore, purified stem-like CSC subpopulations from existing tumor lines are unstable in culture. Finding a means to overcome these technical challenges would be a useful goal. In a first effort towards this, we examined whether a chemical probe that promotes survival of murine embryonic stem cells without added exogenous factors can alter functional characteristics in extant tumor lines in a fashion consistent with a CSC phenotype. METHODOLOGY/PRINCIPAL FINDINGS: The seven tumor lines of the NCI60 colon subpanel were exposed to SC-1 (pluripotin), a dual kinase and GTPase inhibitor that promotes self-renewal, and then examined for tumorigenicity under limiting dilution conditions and clonogenic activity in soft agar. A statistically significant increase in tumor formation following SC-1 treatment was observed (p<0.04). Cloning efficiencies and expression of putative CSC surface antigens (CD133 and CD44) were also increased. SC-1 treatment led to sphere formation in some colon tumor lines. Finally, SC-1 inhibited in vitro kinase activity of RSK2, and another RSK2 inhibitor increased colony formation implicating a role for this kinase in eliciting a CSC phenotype. CONCLUSIONS/SIGNIFICANCE: These findings validate a proof of concept study exposure of extant tumor lines to a small molecule may provide a tractable in vitro model for understanding CSC biology.


Assuntos
Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Esferoides Celulares/efeitos dos fármacos , Transplante Heterólogo , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco
4.
PLoS One ; 7(12): e50494, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284638

RESUMO

BACKGROUND: Topoisomerase I (Top1) is a proven target for cancer therapeutics. Recent data from the Fluorouracil, Oxaliplatin, CPT-11: Use and Sequencing (FOCUS) trial demonstrated that nuclear staining of Top1 correlates with chemotherapeutic efficacy. Such a correlation may help identify patients likely to respond to Top1 inhibitors and illuminate their mechanism of action. Cellular response to Top1 inhibitors is complex, but Top1 target engagement is a necessary first step in this process. This paper reports the development and validation of a quantitative immunoassay for Top1 in tumors. METHODOLOGY/PRINCIPAL FINDINGS: We have developed and validated a two-site enzyme chemiluminescent immunoassay for quantifying Top1 levels in tumor biopsies. Analytical validation of the assay established the inter-day coefficient of variation at 9.3%±3.4% and a 96.5%±7.3% assay accuracy. Preclinical fit-for-purpose modeling of topotecan time- and dose-effects was performed using topotecan-responsive and -nonresponsive xenografts in athymic nude mice. Higher baseline levels of Top1 were observed in topotecan-responsive than -nonresponsive tumors. Top1 levels reached a maximal decrease 4 to 7 hours following treatment of engrafted mice with topotecan and the indenoisoquinoline NSC 724998. CONCLUSIONS/SIGNIFICANCE: Our analysis of Top1 levels in control and treated tumors supports the previously proposed mechanism of action for Top1 inhibitor efficacy, wherein higher baseline Top1 levels lead to formation of more covalent-complex-dependent double-strand break damage and, ultimately, cell death. In contrast, xenografts with lower baseline Top1 levels accumulate fewer double-stand breaks, and may be more resistant to Top1 inhibitors. Our results support further investigation into the use of Top1 levels in tumors as a potential predictive biomarker. The Top1 immunoassay described in this paper has been incorporated into a Phase I clinical trial at the National Cancer Institute to assess pharmacodynamic response in tumor biopsies and determine whether baseline Top1 levels are predictive of response to indenoisoquinoline Top1 inhibitors.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , Imunoensaio/métodos , Neoplasias/enzimologia , Neoplasias/patologia , Animais , Biópsia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , DNA Topoisomerases Tipo I/sangue , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Isoquinolinas/química , Isoquinolinas/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Camundongos , Neoplasias/tratamento farmacológico , Poli(ADP-Ribose) Polimerases/metabolismo , Fatores de Tempo , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Free Radic Biol Med ; 50(1): 110-21, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20971185

RESUMO

In this study, a Cu(2+) chelate of the novel thiosemicarbazone NSC 689534 was evaluated for in vitro and in vivo anti-cancer activity. Results demonstrated that NSC 689534 activity (low micromolar range) was enhanced four- to fivefold by copper chelation and completely attenuated by iron. Importantly, once formed, the NSC 689534/Cu(2+) complex retained activity in the presence of additional iron or iron-containing biomolecules. NSC 689534/Cu(2+) mediated its effects primarily through the induction of ROS, with depletion of cellular glutathione and protein thiols. Pretreatment of cells with the antioxidant N-acetyl-l-cysteine impaired activity, whereas NSC 689534/Cu(2+) effectively synergized with the glutathione biosynthesis inhibitor buthionine sulfoximine. Microarray analysis of NSC 689534/Cu(2+)-treated cells highlighted activation of pathways involved in oxidative and ER stress/UPR, autophagy, and metal metabolism. Further scrutiny of the role of ER stress and autophagy indicated that NSC 689534/Cu(2+)-induced cell death was ER-stress dependent and autophagy independent. Last, NSC 689534/Cu(2+) was shown to have activity in an HL60 xenograft model. These data suggest that NSC 689534/Cu(2+) is a potent oxidative stress inducer worthy of further preclinical investigation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Tiossemicarbazonas/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Quelantes/metabolismo , Quelantes/farmacologia , Cobre/metabolismo , Regulação para Baixo/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Células HL-60 , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Compostos Organometálicos/farmacologia , Compostos Organometálicos/uso terapêutico , Oxidantes/farmacologia , Oxidantes/uso terapêutico , Tiossemicarbazonas/uso terapêutico , Células Tumorais Cultivadas , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA